Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có M, N, P lần lượt là trung điểm của các đoạn thẳng BC

Bài 13 trang 72 SBT Toán 10 Tập 2: Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có M, N, P lần lượt là trung điểm của các đoạn thẳng BC, AC, AB. Biết rằng M(1; 2), N(0; –1) và P(–2; 3).

a) Lập phương trình tham số của đường thẳng BC.

b) Lập phương trình tổng quát của đường trung trực của đoạn thẳng BC.

Trả lời

a) Do P và N lần lượt là trung điểm của AB và AC nên PN là đường trung bình của tam giác ABC, do đó PN // BC.

Ta có: PN=2;  4

Do đó, một vectơ chỉ phương của đường thẳng BC là uBC=12PN=122;  4=1;  2 .

Mặt khác đường thẳng BC đi qua điểm M(1; 2) (do M là trung điểm của BC).

Vậy phương trình tham số của đường thẳng BC là: x=1+ty=22t .

b) Gọi d là đường trung trực của đoạn thẳng BC.

Ta có d đi qua trung điểm M của BC và vuông góc với BC.

Do đó, nd=uBC=1;  2  là vectơ pháp tuyến của đường thẳng d.

Vậy phương trình tổng quát của đường thẳng d là:

1(x – 1) – 2(y – 2) = 0 hay x – 2y + 3 = 0.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 25: Nhị thức Newton

Ôn tập chương 8

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Bài tập ôn tập cuối năm

Câu hỏi cùng chủ đề

Xem tất cả