Câu hỏi:
03/04/2024 32
Trong mặt phẳng \[Oxy\], cho đường thẳng \[d:3x - 4y + 1 = 0\]. Thực hiện liên tiếp phép vị tự tâm \[O\] tỉ số \[k = - 3\] và phép tịnh tiến theo vectơ \[\overrightarrow u = \left( {1;2} \right)\] thì đường thẳng \[d\] biến thành đường thẳng \[d'\] có phương trình là:
A. \[3x - 4y + 2 = 0\]
B. \[3x - 4y - 2 = 0\]
C. \[3x - 4y + 5 = 0\]
D. \[3x - 4y - 5 = 0\]
Trả lời:
Đáp án A
Phương pháp:
+ \[{V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \].
+ \[{T_{\overrightarrow u }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow u \].
Cách giải:
+ Gọi \[M\left( {x;y} \right) \in d\] bất kì.
+ Gọi \[M'\left( {x';y'} \right) = {V_{\left( {O; - 3} \right)}}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = - 3x\\y' = - 3y\end{array} \right.\]
+ Gọi \[M''\left( {x'';y''} \right) = {T_{\overrightarrow u }}\left( {M'} \right) \Rightarrow \left\{ \begin{array}{l}x'' = x' + 1 = - 3x + 1\\y'' = y' + 2 = - 3y + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{ - x'' + 1}}{3}\\y = \frac{{ - y'' + 2}}{3}\end{array} \right. \Rightarrow M\left( {\frac{{ - x'' + 1}}{3};\frac{{ - y'' + 2}}{3}} \right)\].
+ Do \[M \in d \Rightarrow 3\frac{{ - x'' + 1}}{3} - 4\frac{{ - y'' + 2}}{3} + 1 = 0 \Leftrightarrow - 3x'' + 4y'' - 2 = 0 \Leftrightarrow 3x'' - 4y'' + 2 = 0\].
+ Gọi \[d'\] là ảnh của \[d\] qua liên tiếp phép vị tự tâm O tỉ số \[k = - 3\] và phép tịnh tiến theo vectơ \[\overrightarrow u = \left( {1;2} \right)\].
Ta có
\[ \Rightarrow d':3x - 4y + 2 = 0\]
Đáp án A
Phương pháp:
+ \[{V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \].
+ \[{T_{\overrightarrow u }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow u \].
Cách giải:
+ Gọi \[M\left( {x;y} \right) \in d\] bất kì.
+ Gọi \[M'\left( {x';y'} \right) = {V_{\left( {O; - 3} \right)}}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = - 3x\\y' = - 3y\end{array} \right.\]
+ Gọi \[M''\left( {x'';y''} \right) = {T_{\overrightarrow u }}\left( {M'} \right) \Rightarrow \left\{ \begin{array}{l}x'' = x' + 1 = - 3x + 1\\y'' = y' + 2 = - 3y + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{ - x'' + 1}}{3}\\y = \frac{{ - y'' + 2}}{3}\end{array} \right. \Rightarrow M\left( {\frac{{ - x'' + 1}}{3};\frac{{ - y'' + 2}}{3}} \right)\].
+ Do \[M \in d \Rightarrow 3\frac{{ - x'' + 1}}{3} - 4\frac{{ - y'' + 2}}{3} + 1 = 0 \Leftrightarrow - 3x'' + 4y'' - 2 = 0 \Leftrightarrow 3x'' - 4y'' + 2 = 0\].
+ Gọi \[d'\] là ảnh của \[d\] qua liên tiếp phép vị tự tâm O tỉ số \[k = - 3\] và phép tịnh tiến theo vectơ \[\overrightarrow u = \left( {1;2} \right)\].
Ta có
\[ \Rightarrow d':3x - 4y + 2 = 0\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 2:
Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?
Câu 3:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 4:
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
Câu 5:
Từ một hộp chứa 12 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
Câu 6:
Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:
Câu 7:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 8:
Sắp xếp 6 chữ cái H, S, V, H, S, N thành một hàng. Tính xác suất sao cho 2 chữ cái giống nhau đứng cạnh nhau?
Câu 9:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
Câu 10:
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];