Câu hỏi:
03/04/2024 40
Trong mặt phẳng \[Oxy\], cho đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\]. Phép vị tự tỉ số \[k = - \frac{1}{2}\] biến đường tròn \[\left( C \right)\] thành đường tròn có bán kính \[R'\] bằng:
A. 5.
B. \[\frac{5}{2}.\]
C. 10.
D. \[\frac{{25}}{2}.\]
Trả lời:
Đáp án B
Phương pháp:
Phép vị tự tâm \[I\], tỉ số \[k\] biến đường tròn bán kính \[R\] thành đường tròn có bán kính \[R' = \left| k \right|R\].
Cách giải:
Đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\] có bán kính \[R = 5\].
Phép vị tự tỉ số \[k = - \frac{1}{2}\] biến đường tròn \[\left( C \right)\] thành đường tròn có bán kính \[R' = \left| { - \frac{1}{2}} \right|R = \frac{1}{2}.5 = \frac{5}{2}\]
Đáp án B
Phương pháp:
Phép vị tự tâm \[I\], tỉ số \[k\] biến đường tròn bán kính \[R\] thành đường tròn có bán kính \[R' = \left| k \right|R\].
Cách giải:
Đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\] có bán kính \[R = 5\].
Phép vị tự tỉ số \[k = - \frac{1}{2}\] biến đường tròn \[\left( C \right)\] thành đường tròn có bán kính \[R' = \left| { - \frac{1}{2}} \right|R = \frac{1}{2}.5 = \frac{5}{2}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 2:
Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?
Câu 3:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 4:
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
Câu 5:
Từ một hộp chứa 12 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
Câu 6:
Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:
Câu 7:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 8:
Sắp xếp 6 chữ cái H, S, V, H, S, N thành một hàng. Tính xác suất sao cho 2 chữ cái giống nhau đứng cạnh nhau?
Câu 9:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
Câu 10:
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];