Câu hỏi:
03/04/2024 35
Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:
A. \[x = \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}\]
B. \[x = - \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}\]
C. \[x = \frac{\pi }{6} + k\frac{\pi }{2},k \in \mathbb{Z}\]
D. \[x = - \frac{\pi }{6} + k\frac{\pi }{2},k \in \mathbb{Z}\]
Đáp án chính xác
Trả lời:
Giải bởi Vietjack
Đáp án D
Phương pháp:
Giải phương trình lượng giác cơ bản \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\].
Cách giải:
\[\tan 2x + \sqrt 3 = 0 \Leftrightarrow \tan 2x = - \sqrt 3 \Leftrightarrow 2x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{6} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\]
Đáp án D
Phương pháp:
Giải phương trình lượng giác cơ bản \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\].
Cách giải:
\[\tan 2x + \sqrt 3 = 0 \Leftrightarrow \tan 2x = - \sqrt 3 \Leftrightarrow 2x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{6} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Xem đáp án »
03/04/2024
53
Câu 2:
Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?
Xem đáp án »
03/04/2024
53
Câu 3:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Xem đáp án »
03/04/2024
50
Câu 4:
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
Xem đáp án »
03/04/2024
50
Câu 5:
Từ một hộp chứa 12 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
Xem đáp án »
03/04/2024
46
Câu 6:
Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:
Xem đáp án »
03/04/2024
45
Câu 7:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Xem đáp án »
03/04/2024
45
Câu 8:
Sắp xếp 6 chữ cái H, S, V, H, S, N thành một hàng. Tính xác suất sao cho 2 chữ cái giống nhau đứng cạnh nhau?
Xem đáp án »
03/04/2024
45
Câu 9:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
Xem đáp án »
03/04/2024
44
Câu 10:
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];
Xem đáp án »
03/04/2024
41
Câu 11:
Trong mặt phẳng \[Oxy\], cho đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\]. Phép vị tự tỉ số \[k = - \frac{1}{2}\] biến đường tròn \[\left( C \right)\] thành đường tròn có bán kính \[R'\] bằng:
Xem đáp án »
03/04/2024
40
Câu 12:
Trong mặt phẳng \[Oxy\], cho đường thẳng \[d\] có phương trình \[3x - 2y + 1 = 0\]. Ảnh của đường thẳng \[d\] qua phép vị tự tâm \[O\], tỉ số \[k = 2\] có phương trình là:
Xem đáp án »
03/04/2024
39
Câu 13:
Trong mặt phẳng \[Oxy\], cho \[\overrightarrow u = \left( {1; - 2} \right)\] và \[A\left( {2; - 4} \right)\]. Phép tịnh tiến theo vectơ \[\overrightarrow u \] biến điểm \[A\] thành điểm \[B\] có tọa độ là:
Xem đáp án »
03/04/2024
38
Câu 14:
Dãy số nào có công thức số hạng tổng quát dưới đây là dãy số tăng?
Xem đáp án »
03/04/2024
38
Câu 15:
Cho dãy số \[\left( {{u_n}} \right)\] với \[{u_n} = \frac{1}{{{n^2} + n}}\]. Khẳng định nào sau đây SAI?
Xem đáp án »
03/04/2024
38