Câu hỏi:

03/04/2024 44

Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?

A. 360.

B. 180.

Đáp án chính xác

C. 120.

D. 15.

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:           

+ Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].

+ Chọn từng chữ số, sau đó áp dụng quy tắc nhân.

Cách giải:

Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].

+ Số cần lập là số chẵn \[ \Rightarrow d \in \left\{ {2;4;6} \right\} \Rightarrow \] Có 3 cách chọn \[d\].

+ Ứng với mỗi cách chọn \[d\]\[A_5^3 = 60\] cách chọn 3 chữ số \[a,b,c\].

Áp dụng quy tắc nhân ta có: \[3.60 = 180\] số thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Xem đáp án » 03/04/2024 53

Câu 2:

Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?

Xem đáp án » 03/04/2024 53

Câu 3:

Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]

Xem đáp án » 03/04/2024 50

Câu 4:

1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.

Xem đáp án » 03/04/2024 50

Câu 5:

Từ một hộp chứa 12 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:

Xem đáp án » 03/04/2024 46

Câu 6:

Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:

Xem đáp án » 03/04/2024 45

Câu 7:

Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]

Xem đáp án » 03/04/2024 45

Câu 8:

Sắp xếp 6 chữ cái H, S, V, H, S, N thành một hàng. Tính xác suất sao cho 2 chữ cái giống nhau đứng cạnh nhau?

Xem đáp án » 03/04/2024 45

Câu 9:

1) Giải các phương trình sau:

   a) \[2\sin x + \sqrt 2 = 0\];

   b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];

Xem đáp án » 03/04/2024 41

Câu 10:

Trong mặt phẳng \[Oxy\], cho đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 25\]. Phép vị tự tỉ số \[k = - \frac{1}{2}\] biến đường tròn \[\left( C \right)\] thành đường tròn có bán kính \[R'\] bằng:

Xem đáp án » 03/04/2024 40

Câu 11:

Trong mặt phẳng \[Oxy\], cho đường thẳng \[d\] có phương trình \[3x - 2y + 1 = 0\]. Ảnh của đường thẳng \[d\] qua phép vị tự tâm \[O\], tỉ số \[k = 2\] có phương trình là:

Xem đáp án » 03/04/2024 39

Câu 12:

Trong mặt phẳng \[Oxy\], cho \[\overrightarrow u = \left( {1; - 2} \right)\]\[A\left( {2; - 4} \right)\]. Phép tịnh tiến theo vectơ \[\overrightarrow u \] biến điểm \[A\] thành điểm \[B\] có tọa độ là:

Xem đáp án » 03/04/2024 38

Câu 13:

Dãy số nào có công thức số hạng tổng quát dưới đây là dãy số tăng?

Xem đáp án » 03/04/2024 38

Câu 14:

Cho dãy số \[\left( {{u_n}} \right)\] với \[{u_n} = \frac{1}{{{n^2} + n}}\]. Khẳng định nào sau đây SAI?

Xem đáp án » 03/04/2024 38

Câu 15:

Cho dãy số \[\left( {{u_n}} \right)\] xác định bởi: \[\left\{ \begin{array}{l}{u_1} = 2018\\{u_{n + 1}} = {u_n} + n\left( {\forall n \in {\mathbb{N}^*}} \right)\end{array} \right.\]. Số hạng tổng quát \[{u_n}\] của dãy số là số hạng nào dưới đây?

Xem đáp án » 03/04/2024 37