Câu hỏi:
03/04/2024 53
Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?
Trả lời:
Phương pháp:
+ Tính số phần tử của không gian mẫu.
+ Tính số phần tử của biến cố.
+ Tính xác suất của biến cố.
Cách giải:
Chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right) \Rightarrow n\left( \Omega \right) = C_{36}^4 = 58905\].
Giả sử \[{A_1},{A_2},{A_3},...,{A_{36}}\] là 36 đỉnh của đa giác đều \[\left( H \right)\]. Gọi \[O\] là tâm của đa giác đều \[\left( H \right)\].
\[ \Rightarrow {A_1}{A_2}...{A_{36}}\] là đa giác đều ngoại tiếp đường tròn \[\left( O \right)\].
Khi đó ta có \[{A_i}O{A_{i + 1}} = \frac{{360^\circ }}{{36}} = 10^\circ \,\,\forall i = \overline {1;36} \].
Để \[{A_x}{A_y}{A_z}{A_t}\] là hình vuông thì \[{A_x}O{A_y} = {A_y}O{A_z} = {A_z}O{A_t} = {A_t}O{A_x} = 90^\circ \].
Ta có \[{O_1}O{A_{10}} = {A_{10}}O{A_{19}} = {A_{19}}O{A_{28}} = {A_{28}}O{A_1} = 90^\circ \Rightarrow {A_1}{A_{10}}{A_{19}}{A_{28}}\] là 1 hình vuông.
Cứ như vậy ta có các hình vuông là \[{A_2}{A_{11}}{A_{20}}{A_{29}},\,\,{A_3}{A_{12}}{A_{21}}{A_{30}},...,{A_9}{A_{18}}{A_{27}}{A_{36}}\].
Gọi A là biến cố: “4 đỉnh được chọn tạo thành hình vuông” \[ \Rightarrow n\left( A \right) = 9\].
Vậy \[P\left( A \right) = \frac{9}{{58905}} = \frac{1}{{6564}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 2:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 3:
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
Câu 4:
Từ một hộp chứa 12 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
Câu 5:
Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:
Câu 6:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 7:
Sắp xếp 6 chữ cái H, S, V, H, S, N thành một hàng. Tính xác suất sao cho 2 chữ cái giống nhau đứng cạnh nhau?
Câu 8:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
Câu 9:
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];