Trong Hình 76, cho biết các tam giác ABD và BCE là các tam giác đều và A, B, C thẳng hàng. Chứng minh rằng: AD // BE và BD//CE

Bài 4 trang 96 Toán 7 Tập 2Trong Hình 76, cho biết các tam giác ABD và BCE là các tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

Giải Toán 7 Bài 7 (Cánh diều): Tam giác cân (ảnh 1) 

a) AD // BE và BD // CE;

b) ABE^=DBC^=120°; 

c) AE = CD.

Trả lời

GT

ABD đều, BCE đều

A, B, C thẳng hàng

KL

a) AD // BE và BD // CE;

b) ABE^=DBC^=120°; 

c) AE = CD.

Chứng minh (Hình 76):

a) Vì tam giác ABD đều (giả thiết)

Nên AB = BD = AD và DAB^=DBA^=ADB^=60° 

Tam giác BCE đều (giả thiết)

Nên BC = CE = BE và ECB^=EBC^=CEB^=60° 

Vì DAB^=EBC^=60° mà hai góc này ở vị trí đồng vị

Nên AD // BE (dấu hiệu nhận biết hai đường thẳng song song)

Vì DBA^=ECB^=60° mà hai góc này ở vị trí đồng vị

Nên BD // CE (dấu hiệu nhận biết hai đường thẳng song song)

Vậy AD // BE và BD // CE.

b) Vì ABE^ và EBC^ là hai góc kề bù nên ABE^+EBC^=180° (tính chất hai góc kề bù)

Suy ra ABE^=180°EBC^=180°60°=120°

Tương tự ta cũng có DBA^+DBC^=180° (tính chất hai góc kề bù)

Nên DBC^=180°DBA^=180°60°=120°

Vậy ABE^=DBC^=120°.

c) Xét tam giác ABE và tam giác DBC có:

AB = DB (chứng minh trên)

ABE^=DBC^=120° (chứng minh trên)

BE = BC (chứng minh trên)

Do đó ABE = DBC (c.g.c)

Suy ra AE = CD (hai cạnh tương ứng)

Vậy AE = CD.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 7: Tam giác cân

Bài 8: Đường vuông góc và đường xiên

Bài 9: Đường trung trực của một đoạn thẳng

Bài 10: Tính chất ba đường trung tuyến của tam giác

Câu hỏi cùng chủ đề

Xem tất cả