Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân
Bài 3 trang 96 Toán 7 Tập 2: Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.
Bài 3 trang 96 Toán 7 Tập 2: Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân.
GT |
ABC vuông cân tại A M là trung điểm của cạnh huyền BC |
KL |
MAB vuông cân. |
Chứng minh (Hình vẽ dưới đây)
+) Tam giác ABC là tam giác vuông cân tại A (giả thiết) nên AB = AC và
Xét tam giác ABM và tam giác ACM có:
AM là cạnh chung
MB = MC (M là trung điểm của BC)
AB = AC (chứng minh trên)
Do đó ABM = ACM (c.c.c)
Suy ra (hai góc tương ứng)
Nên tia AM là tia phân giác của góc A
Do đó
+) Xét tam giác MAB có
Do đó tam giác MAB cân tại M. (1)
Lại có (hai góc tương ứng của ABM = ACM)
Mà (tính chất hai góc kề bù)
Do đó
Nên tam giác MAB vuông tại M. (2)
Từ (1) và (2) suy ra tam giác MAB vuông cân tại M.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Bài 8: Đường vuông góc và đường xiên