Cho tam giác ABC cân tại A có M là trung điểm của cạnh AC và N là trung điểm của cạnh AB. Chứng minh BM = CN
Bài 1 trang 96 Toán 7 Tập 2: Cho tam giác ABC cân tại A có M là trung điểm của cạnh AC và N là trung điểm của cạnh AB. Chứng minh BM = CN.
Bài 1 trang 96 Toán 7 Tập 2: Cho tam giác ABC cân tại A có M là trung điểm của cạnh AC và N là trung điểm của cạnh AB. Chứng minh BM = CN.
GT |
ABC cân tại A M, N lần lượt là trung điểm cạnh AC, AB |
KL |
BM = CN. |
Chứng minh (Hình vẽ dưới đây)
Tam giác ABC cân tại A (giả thiết) nên và AB = AC (1)
Mà M là trung điểm cạnh AC (giả thiết) nên AM = MC (2)
N là trung điểm cạnh AB (giả thiết) nên AN = NB (3)
Từ (1), (2) và (3) suy ra AM = MC = AN = NB
Xét tam giác BNC và tam giác CMB có:
BN = CM (chứng minh trên)
(chứng minh trên)
BC là cạnh chung
Do đó BNC = CMB (c.g.c)
Suy ra CN = BM (hai cạnh tương ứng)
Vậy BM = CN.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Bài 8: Đường vuông góc và đường xiên