Tính chiều cao AB của một ngọn núi. Biết tại hai điểm C, D cách nhau 1 km trên mặt đất (B, C, D thẳng hàng), người ta nhìn thấy đỉnh A của núi

Bài 4 trang 78 Toán lớp 10 Tập 1Tính chiều cao AB của một ngọn núi. Biết tại hai điểm C, D cách nhau 1 km trên mặt đất (B, C, D thẳng hàng), người ta nhìn thấy đỉnh A của núi với góc nâng lần lượt là 32° và 40° (Hình 9).

Giải Toán 10 Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo (ảnh 1)

Trả lời

Vì CDA^ và ADB^ là hai góc kề bù nên CDA^=1800400=1400

Xét tam giác ACD có : CAD^=1800(320+1400)=80

Áp dụng định lí sin ta có: ADsinC=CDsinAAD=CD.sinCsinA=1.sin320sin80 ≈ 3,81 km.

Xét tam giác ABD vuông tại B, ta có:sinADB^=ABADAB=AD.sin400 ≈ 2,45 km.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Câu hỏi cùng chủ đề

Xem tất cả