Tìm giới hạn của các dãy số sau: a) un = n^2 / (3n^2+7n-2) 

Bài 5.26 trang 124 Toán 11 Tập 1: Tìm giới hạn của các dãy số sau:

a) un=n23n2+7n2;

b) vn=k=0n3k+5k6k;

c) wn=sinn4n.

Trả lời

a) un=n23n2+7n2

Ta có: limn+un=limn+n23n2+7n2=limn+n2n23+7n2n2=limn+13+7n2n2=13

b) vn=k=0n3k+5k6k=30+5060+31+5161+32+5262+...+3n+5n6n

=3060+5060+3161+5161+3262+5262+...+3n6n+5n6n

=120+560+121+561+122+562+...+12n+56n

Bài 5.26 trang 124 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Vì 121+122+...+12n là tổng n số hạng đầu của cấp số nhân với số hạng đầu là 121=12 và công bội là 12 nên

120+121+122+...+12n=120+12112n112=1+112n=212n.

Tương tự, ta tính được:

560+561+562+...+56n=560+56156n156=1+5156n=6556n.

Do đó, Bài 5.26 trang 124 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Vậy Bài 5.26 trang 124 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

c) wn=sinn4n

Ta có: Bài 5.26 trang 124 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Do đó, limn+wn=limn+sinn4n=0.

Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối Chương 5

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Câu hỏi cùng chủ đề

Xem tất cả