Giải SGK Toán 11 (Kết nối tri thức): Một vài áp dụng của toán học trong tài chính

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 11 Một vài áp dụng của toán học trong tài chính sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Một vài áp dụng của toán học trong tài chính

1. Số tiền của một niên kim

HĐ1 trang 126 Toán 11 Tập 1: Số tiền của một niên kim

Bác Lan gửi đều dặn 10 triệu đồng vào ngày đầu mỗi tháng trong vòng 5 năm vào một tài khoản tích lũy hưởng lãi suất 6% mỗi năm, theo hình thức lãi kép hằng tháng.

a) Tính số tiền có trong tài khoản vào cuối kì thứ nhất, cuối kì thứ hai.

b) Tính số tiền có trong tài khoản vào cuối kì thứ n.

c) Tính số tiền có trong tài khoản ngay sau lần thanh toán cuối cùng.

Lời giải:

a) Ta có: 5 năm = 60 tháng.

Lãi suất theo tháng là 0,5%.

Số tiền có trong tài khoản vào cuối kì thứ nhất là

A1 = 10 + 10. 0,5% = 10.(1 + 0,5%) = 10,05 (triệu đồng).

Số tiền có trong tài khoản vào cuối kì thứ hai là

A2 = [10.(1 + 0,5%) + 10] + [10.(1 + 0,5%) + 10].0,5%

= [10.(1 + 0,5%) + 10](1 + 0,5%) = 10.(1 + 0,5%)2 + 10.(1 + 0,5%)

= 20,15025 (triệu đồng).

b) Tiếp tục làm như trên ta thấy số tiền có trong tài khoản vào cuối kì thứ n là

An = 10.(1 + 0,5%)n + 10.(1 + 0,5%)n – 1 + ... + 10.(1 + 0,5%) (triệu đồng).

c) Số tiền có trong tài khoản ngay sau lần thanh toán cuối cùng là

A = A59 + 10 = [10.(1 + 0,5%)59 + 10.(1 + 0,5%)58 + ... + 10.(1 + 0,5%)] + 10

= 10 + 10.(1 + 0,5%) + 10.(1 + 0,5%)2 + ... + 10.(1 + 0,5%)59

Đây là tổng của 60 số hạng đầu của một cấp số nhân với số hạng đầu tiên a = 10 và công bội q = 1 + 0,5%, nên ta có:

A =10.11+0,5%6011+0,5%=10.1+0,5%6010,5% ≈ 697,7 (triệu đồng).

Vận dụng 1 trang 126 Toán 11 Tập 1: Anh Bình cần đầu tư bao nhiêu tiền hằng tháng với lãi suất 6% mỗi năm, theo hình thức tính lãi kép hằng tháng, để có 200 triệu đồng sau hai năm?

Lời giải:

Gọi R (triệu đồng) là số tiền anh Bình cần đầu tư hằng tháng.

Ta có: 2 năm = 24 tháng. Suy ra n = 24.

Lãi suất theo tháng là 0,5%, suy ra i = 0,5%.

Ta có: Af = 200 (triệu đồng).

Từ công thức Af=R1+in1i , ta suy ra R=Af.i1+in1 , thay số ta được:

R=200.0,5%1+0,5%241=7,864122051... (triệu đồng).

Vậy anh Bình cần đầu tư mỗi tháng khoảng 7,865 triệu đồng hay 7 865 000 đồng mỗi tháng để có 200 triệu đồng sau 2 năm.

(Thà dư chứ không để thiếu nên số tiền mỗi tháng anh Bình cần đầu tư phải lớn hơn R mà ta tìm được).

2. Giá trị hiện tại của một niên kim

HĐ2 trang 126 Toán 11 Tập 1: Nhận biết giá trị hiện tại của một số tiền

Giả sử một người gửi tiết kiệm với lãi suất không đổi 6% một năm, theo hình thức tính lãi kép hằng quý.

a) Tính lãi suất i trong mỗi quý và số khoảng thời gian tính lãi trong vòng 5 năm.

b) Giả sử sau 5 năm người đó nhận được số tiền 100 triệu đồng cả vỗn lẫn lãi. Tính giá trị hiện tại của số tiền 100 triệu đồng đó.

Lời giải:

a) Một năm có 4 quý nên lãi suất trong mỗi quý là i = 6% : 4 = 1,5%.

Số khoảng thời gian tính lãi trong vòng 5 năm là 5 . 4 = 20.

b) Giá trị hiện tại của số tiền 100 triệu đồng đó là

Ap = 100 . (1 + 1,5%)-20 ≈ 74,25 (triệu đồng).

Vận dụng 2 trang 127 Toán 11 Tập 1: Một người trúng xổ số giải đặc biệt với trị giá 5 tỉ đồng và số tiền trúng thưởng sẽ được trả dần hằng năm, mỗi năm 500 triệu đồng trong vòng 10 năm. Giá trị hiện tại của giải đặc biệt này là bao nhiêu? Giả sử người đó có thể tìm được hình thức đầu tư với lãi suất 8% mỗi năm, tính lãi kép hằng năm.

Lời giải:

Mỗi năm thanh toán 500 triệu đồng trong vòng 10 năm, tức là khoản thanh toán đều đặn bằng nhau và bằng 500 triệu đồng hay R = 500 (triệu đồng) và số khoản thanh toán là n = 10 (năm).

Lãi suất 8% mỗi năm hay i = 8%.

Giá trị hiện tại của giải đặc biệt trên là

Ap=R11+ini=500.11+8%108%3355,0407 (triệu đồng).

Lãi kép là: 5 000 – 3 355,0407 = 1 644,,9593 (triệu đồng).

3. Mua trả góp

HĐ3 trang 127 Toán 11 Tập 1: Anh Hưng muốn mua một chiếc xe ô tô theo hình thức trả góp để chạy xe dịch vụ. Anh ấy có thể trả dần 10 triệu đồng mỗi tháng nhưng không có tiền trả trước. Nếu anh Hưng có thể thực hiện các khoản thanh toán này trong vòng 5 năm và lãi suất 10% một năm, thì hiện tại anh ấy có thể mua được chiếc xe ô tô với mức giá nào?

Lời giải:

Ta có: 5 năm = 60 tháng, suy ra n = 60.

Lãi suất hằng tháng là i = 56% .

Số tiền trả dần hằng tháng là R = 10 (triệu đồng).

Anh Hưng có thể mua xe ô tô với mức giá là

Ap=R11+ini=10.11+56%6056%470,65 (triệu đồng).

Vậy hiện tại anh Hưng có thể mua được chiếc xe ô tô với giá khoảng 470,65 triệu đồng.

Vận dụng 3 trang 127 Toán 11 Tập 1: Một cặp vợ chồng trẻ vay ngân hàng 1 tỉ đồng với lãi suất 9% một năm để mua nhà. Họ dự định sẽ trả góp hằng tháng trong vòng 10 năm để hoàn trả khoản vay này. Hỏi mỗi tháng họ sẽ phải trả cho ngân hàng bao nhiêu tiền?

Lời giải:

Ta có: 10 năm = 120 tháng, suy ra n = 120.

Lãi suất hằng tháng là i = 0,75%.

Số tiền vay là Ap = 1 tỉ đồng = 1 000 triệu đồng.

Số tiền mỗi tháng họ sẽ phải trả cho ngân hàng là

R=iAp11+in =0,75%.100011+0,75%120 ≈ 12,67 (triệu đồng).

Vậy mỗi tháng họ phải trả cho ngân hàng khoảng 12,67 triệu đồng.

Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối Chương 5

Lực căng mặt ngoài của nước

Câu hỏi liên quan

a) Ta có: 5 năm = 60 tháng.
Xem thêm
Gọi R (triệu đồng) là số tiền anh Bình cần đầu tư hằng tháng.
Xem thêm
Ta có: 10 năm = 120 tháng, suy ra n = 120.
Xem thêm
Ta có: 5 năm = 60 tháng, suy ra n = 60.
Xem thêm
Mỗi năm thanh toán 500 triệu đồng trong vòng 10 năm, tức là khoản thanh toán đều đặn bằng nhau và bằng 500 triệu đồng hay R = 500 (triệu đồng) và số khoản thanh toán là n = 10 (năm).
Xem thêm
a) Một năm có 4 quý nên lãi suất trong mỗi quý là i = 6% : 4 = 1,5%.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Một vài áp dụng của toán học trong tài chính
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!