Ở Hình 1, cho biết AE = AF và góc ABC = góc ACB. Chứng minh rằng AH là đường trung trực của BC

Bài 8 trang 84 Toán 7 Tập 2:

Ở Hình 1, cho biết AE = AF và ABC^=ACB^. Chứng minh rằng AH là đường trung trực của BC.

Giải Toán 7  (Chân trời sáng tạo): Bài tập cuối chương 8 (ảnh 1) 

Trả lời

GT

ABC, AE = AF, ABC^=ACB^.

KL

AH là đường trung trực của BC.

 

Giải Toán 7  (Chân trời sáng tạo): Bài tập cuối chương 8 (ảnh 1) 

Tam giác ABC có ABC^=ACB^ (giả thiết) nên tam giác ABC cân tại A.

Do đó AB = AC.

Mà AE = AF (giả thiết)

Nên AB - AE = AC - AF

Hay BE = CF.

Xét ∆EBC và ∆FCB có:

BE = CF (chứng minh trên);

EBC^=FCB^ (do ABC^=ACB^);

BC là cạnh chung

Do đó ∆EBC = ∆FCB (c.g.c)

Suy ra ECB^=FBC^ (hai góc tương ứng)

Hay HCB^=HBC^.

Do đó tam giác HBC cân tại H.

Suy ra HB = HC, từ đó ta có H thuộc trung trực của BC.

Lại có AB = AC (chứng minh trên)

Suy ra A thuộc trung trực của BC

Do đó AH là đường trung trực của BC.

Vậy AH là đường trung trực của BC.

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác: 

Bài 9: Tính chất ba đường phân giác của tam giác

Bài 10: Hoạt động thực hành và trải nghiệm. Làm giàn hoa tam giác để trang trí lớp học

Bài tập cuối chương 8

Bài 1: Làm quen với biến cố ngẫu nhiên

Bài 2: Làm quen với xác suất của biến cố ngẫu nhiên

Bài 3: Hoạt động thực hành và trải nghiệm. Nhảy theo xúc xắc

Câu hỏi cùng chủ đề

Xem tất cả