Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH. Đường trung trực của cạnh BC cắt AC tại M, cắt BC tại N

Bài 5 trang 84 Toán 7 Tập 2:

Cho tam giác ABC nhọn (AB < AC), vẽ đường cao AH. Đường trung trực của cạnh BC cắt AC tại M, cắt BC tại N.

a) Chứng minh rằng BMN^=HAC^.

b) Kẻ MI  AH (I  AH), gọi K là giao điểm của AH với BM. Chứng minh rằng I là trung điểm của AK.

Trả lời

GT

ABC nhọn, AB < AC, đường cao AH,

MN là đường trung trực của BC, M  AC, N  BC,

b) MI  AH (I  AH), K là giao điểm của AH với BM

KL

a) BMN^=HAC^

b) I là trung điểm của AK.

 

Giải Toán 7  (Chân trời sáng tạo): Bài tập cuối chương 8 (ảnh 1) 

a) Vì M, N nằm trên đường trung trực của BC (giả thiết) nên MN là đường trung trực của BC

Suy ra MN  BC tại trung điểm N của BC và MB = MC (tính chất đường trung trực)

Xét ∆BMN (vuông tại N) và ∆CMN (vuông tại N) có:

MB = MC (chứng minh trên),

MN là cạnh chung.

Do đó ∆BMN = ∆CMN (cạnh huyền - cạnh góc vuông).

Suy ra BMN^=CMN^ (hai góc tương ứng) (1).

Mặt khác: MN  BC (chứng minh trên),

AH  BC (giả thiết)

Do đó MN // AH.

Suy ra CMN^=CAH^ (hai góc đồng vị) (2).

Từ (1) và (2) suy ra BMN^=CAH^.

Vậy BMN^=HAC^.

b) Ta có MN // AH (chứng minh câu a)

Suy ra BMN^=AKM^ (hai góc so le trong)

Mà BMN^=HAC^ (chứng minh câu a)

Suy ra AKM^=HAC^ hay AKM^=KAM^ 

Do đó tam giác AMK cân tại M

Suy ra MA = MB nên M nằm trên đường trung trực của AK.

Lại có MI  AK tại I nên MI là đường trung trực của AK.

Do đó I là trung điểm của AK.

Vậy I là trung điểm của AK.

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác: 

Bài 9: Tính chất ba đường phân giác của tam giác

Bài 10: Hoạt động thực hành và trải nghiệm. Làm giàn hoa tam giác để trang trí lớp học

Bài tập cuối chương 8

Bài 1: Làm quen với biến cố ngẫu nhiên

Bài 2: Làm quen với xác suất của biến cố ngẫu nhiên

Bài 3: Hoạt động thực hành và trải nghiệm. Nhảy theo xúc xắc

Câu hỏi cùng chủ đề

Xem tất cả