Nguyên hàm U = ( x - 2 )^2020/ ( x + 1)^2022 dx là: A. U = 1/3( x - 2/x + 1)^2021 + C B. U = 1/6060 ( x - 2/x + 1)^2020 + C C. U = 1/6063( x - 2/x + 1)^2021 + C D. U = 1/6069( x -
Nguyên hàm \[U = \int {\frac{{{{\left( {x - 2} \right)}^{2020}}}}{{{{\left( {x + 1} \right)}^{2022}}}}dx} \] là:
A. \[U = \frac{1}{3}{\left( {\frac{{x - 2}}{{x + 1}}} \right)^{2021}} + C\]
B. \[U = \frac{1}{{6060}}{\left( {\frac{{x - 2}}{{x + 1}}} \right)^{2020}} + C\]
C. \[U = \frac{1}{{6063}}{\left( {\frac{{x - 2}}{{x + 1}}} \right)^{2021}} + C\]
D. \[U = \frac{1}{{6069}}{\left( {\frac{{x - 2}}{{x + 1}}} \right)^{2023}} + C\]