Nguyên hàm I = x^4e^3xdx là: A. I = ( x^4/3 - 4x^3/3^2 + 12x^2/3^3 - 24x/3^4 + 24/3^5)e^3x + C B. I = x^5/5.e^3x/3 + C C. I = ( x^4/3+ 4x^3/3^2 -12x^2/3^3 + 24x/3^4 - 24/3^5)e^3x + C
Nguyên hàm \[I = \int {{x^4}{e^{3x}}dx} \] là:
A. \[I = \left( {\frac{{{x^4}}}{3} - \frac{{4{x^3}}}{{{3^2}}} + \frac{{12{x^2}}}{{{3^3}}} - \frac{{24x}}{{{3^4}}} + \frac{{24}}{{{3^5}}}} \right){e^{3x}} + C\]
B. \[I = \frac{{{x^5}}}{5}.\frac{{{e^{3x}}}}{3} + C\]
C. \[I = \left( {\frac{{{x^4}}}{3} + \frac{{4{x^3}}}{{{3^2}}} - \frac{{12{x^2}}}{{{3^3}}} + \frac{{24x}}{{{3^4}}} - \frac{{24}}{{{3^5}}}} \right){e^{3x}} + C\]
D. \[I = \left( {\frac{{{x^4}}}{3} - \frac{{4{x^3}}}{{{3^2}}} + \frac{{12{x^2}}}{{{3^3}}}} \right){e^{3x}} + C\]