Cho tam giác ABC có BC = a, AC = b, góc BAC =α. Kẻ đường cao BH. Cho α là góc tù. Chứng minh

Hoạt động 7 trang 67 Toán lớp 10 Tập 1Cho tam giác ABC có BC = a, AC = b, ^BAC=α. Kẻ đường cao BH.

Cho α là góc tù. Chứng minh:

a) HC = AC + AH và BC2 = AB2 + AC2 + 2 AH . AC;

b) a2 = b2 + c2 – 2bc cos α.

 

Trả lời

Giải Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác - Cánh diều (ảnh 1)

a) Do α là góc tù nên A nằm giữa H và C. Do đó: HC = AC + AH.

Xét các tam giác vuông BHC và AHB, áp dụng định lí Pythagore, ta có:

BC2 = BH2 + HC2 = BH2 + (AC + AH)2

        = (BH2 + AH2) + AC2 + 2AH . AC

        = AB2 + AC2 + 2AH . AC.

b) Xét tam giác AHB vuông tại H, ta có:

AH = AB cos(180° – α) = – c cos α.

Do đó BC2 = AB2 + AC2 + 2AH . AC = b2 + c2 – 2bc.cos α.

Vậy a2 = b2 + c2 – 2bc.cos α.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 5: Hai dạng phương trình quy về phương trình bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lý côsin và định lý sin trong tam giác

Bài 2: Giải tam giác. Tính diện tích tam giác

Bài 3: Khái niệm vectơ

Bài 4: Tổng và hiệu của hai vectơ

Câu hỏi cùng chủ đề

Xem tất cả