Cho hàm số y = cos x. a) Xét tính chẵn, lẻ của hàm số
1.7k
08/05/2023
HĐ5 trang 26 Toán 11 Tập 1: Cho hàm số y = cos x.
a) Xét tính chẵn, lẻ của hàm số.
b) Hoàn thành bảng giá trị sau của hàm số y = cos x trên đoạn [– π; π] bằng cách tính giá trị của cos x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của cos x với những x âm.

Bằng cách lấy nhiều điểm M(x; cos x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = cos x trên đoạn [– π; π].
c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = cos x như hình dưới đây.

Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = cos x.
Trả lời
a) Hàm số y = f(x) = cos x có tập xác định là D = ℝ.
Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.
Ta có: f(– x) = cos (– x) = cos x = f(x), ∀ x ∈ D.
Vậy y = cos x là hàm số chẵn.
b) Ta có: cos 0 = 1, cosπ4=√22,cosπ2=0, cos3π4=−√22 , cos π = – 1.
Vì y = cos x là hàm số chẵn nên cos(−π4)=cosπ4=√22, cos(−π2)=cosπ2=0 ,
cos(−3π4)=cos3π4=−√22, cos(– π) = cos π = – 1.
Vậy ta hoàn thành được bảng như sau:

c) Quan sát Hình 1.15, ta thấy đồ thị hàm số y = cos x có:
+) Tập giá trị là [– 1; 1];
+) Đồng biến trên mỗi khoảng (−π+k2π; k2π) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng (k2π; π+k2π), k∈ℤ (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).
Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 1: Giá trị lượng giác của góc lượng giác
Bài 2: Công thức lượng giác
Bài 3: Hàm số lượng giác
Bài 4: Phương trình lượng giác cơ bản
Bài tập cuối chương 1