Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng: a) ∆BDF ᔕ ∆BAC và ∆CDE ᔕ ∆CAB

Bài 9.48 trang 63 SBT Toán lớp 8 Tập 2: Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:

a) ∆BDF ᔕ ∆BAC và ∆CDE ᔕ ∆CAB;

b) BF . BA + CE . CA = BC2.

Trả lời

Cho tam giác nhọn ABC có các đường cao AD, BE, CF

Vì AD, BE, CF là các đường cao của tam giác ABC nên AD vuông góc với BC, BE vuông góc với AC, CF vuông góc với AB.

Tam giác BDA vuông ở D và tam giác BFC vuông ở F có:

 ABC^ chung.

Do đó, ∆BDA ᔕ ∆BFC (góc nhọn). Suy ra BDBF=BABC .

Suy ra BDBA=BFBC .

Xét tam giác BDF và tam giác BAC có:

 BDBA=BFBC

ABC^ chung

Do đó, ∆BDF ᔕ ∆BAC (c.g.c).

Tam giác CDA vuông ở D và tam giác CEB vuông ở E có:

ACB^ chung

Do đó, ∆CDA ᔕ ∆CEB (góc nhọn).

Nên CDCE=CABC .

Suy ra CDCA=CEBC .

Tam giác CDE và tam giác CAB có: CDCA=CEBC

 ACB^ chung

Do đó, ∆CDE ᔕ ∆CAB (c.g.c).

b)

Theo chứng minh phần a ta có:

 BDBA=BFBC nên BF . BA = BD . BC;

 CDCA=CEBC nên CE . CA = CD . BC.

Suy ra BF . BA + CE . CA = BD . BC + CD . BC = BC.(BD + CD) = BC . BC = BC2.

Vậy BF . BA + CE . CA = BC2.

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả