Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng

Bài 9.47 trang 63 SBT Toán lớp 8 Tập 2: Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:

a) HA . HD = HB . HE = HC . HF;

b) ∆AFC ᔕ ∆AEB và AF . AB = AE . AC;

c) ∆BDF ᔕ ∆EDC và DA là tia phân giác của góc EDF.

Trả lời

Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H

a)

Vì AD, BE, CF là các đường cao của tam giác ABC nên AD vuông góc với BC, BE vuông góc với AC, CF vuông góc với AB.

Tam giác AHE vuông ở H và tam giác BHD vuông ở D có:

AHE^=BHD^ (hai góc đối đỉnh)

Do đó, ∆AHE ᔕ ∆BHD (góc nhọn).

Suy ra AHBH=HEHD nên HA . HD = HB . HE (1).

Tam giác HBF vuông ở F và tam giác HCE vuông ở E có:

 BHF^=EHC^ (hai góc đối đỉnh)

Do đó, ∆HBF ᔕ ∆HCE (góc nhọn).

Suy ra HBHC=HFHE  nên HB . HE = HC . HF (2).

Từ (1) và (2) ta có: HA . HD = HB . HE = HC . HF.

b)

Tam giác AFC vuông ở F và tam giác AEB vuông ở E có:

 BAC^ chung.c

Do đó, ∆AFC ᔕ ∆AEB (góc nhọn)

Suy ra AFAE=ACAB  nên AF . AB = AE . AC.

c)

Vì HA . HD = HB . HE nên HAHE=HBHD

Tam giác HAB và tam giác HED có:

 HAHE=HBHD (cmt)

AHB^=EHD^ (hai góc đối đỉnh)

Do đó, ∆AHB ᔕ ∆EHD (c.g.c).

Suy ra HAB^=HED^ .

Mà HAB^+FBD^=HED^+DEC^  (= 90° ).

Do đó, FBD^=DEC^.

Chứng minh tương tự ta có: BFD^=ECD^ .

Tam giác BDF và tam giác EDC có:

FBD^=DEC^ (cmt)

BFD^=ECD^ (cmt)

Do đó, ∆BDF ᔕ ∆EDC (g.g).

Suy ra: BDF^=EDC^ .

Mà BDF^+FDH^=EDC^+HDE^=90° .

Do đó, FDH^=HDE^  hay FDA^=ADE^ .

Vậy DA là tia phân giác của góc EDF.

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả