Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB
394
12/06/2023
Bài 10 trang 103 Toán lớp 10 Tập 1: Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng .
Trả lời
Tam giác ABC đều nên .
Qua M kẻ NS // AB, PT // AC, RQ // BC.
Do NS //AB nên và .
Do PT // AC nên và .
Do RQ // BC nên và .
Khi đó các tam giác MNT, MRS và MPQ là các tam giác đều.
Tam giác MNT đều có MD NT nên D là trung điểm của NT.
Tam giác MRS đều có ME RS nên E là trung điểm của RS.
Tam giác MPQ đều có MF PQ nên F là trung điểm của PQ.
Do D là trung điểm của NT nên .
Do E là trung điểm của RS nên .
Do F là trung điểm của PQ nên .
Do đó
Tứ giác MNBQ có MN // BQ và MQ // BN nên MNBQ là hình bình hành.
Tứ giác MTCR có MT // CR và MR // CT nên MTCR là hình bình hành.
Tứ giác MSAP có MP // AS và MS // AP nên MSAP là hình bình hành.
Khi đó áp dụng quy tắc hình bình hành ta có:
; ; .
Do đó .
Do O là trọng tâm của tam giác ABC nên hay
.
Do đó .
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Tích của một số với một vectơ
Bài 4: Tích vô hướng của hai vectơ
Bài tập cuối chương 5
Bài 1: Số gần đúng và sai số
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu