Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB

Bài 10 trang 103 Toán lớp 10 Tập 1: Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng MD+ME+MF=32MO.

 

 

Trả lời

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Tam giác ABC đều nên ABC^=ACB^=BAC^=60°.

Qua M kẻ NS // AB, PT // AC, RQ // BC.

Do NS //AB nên MNT^=ABC^=60° và MSR^=BAC^=60°.

Do PT // AC nên MTN^=ACB^=60° và MPQ^=BAC^=60°.

Do RQ // BC nên MRS^=ACB^=60° và MQP^=ABC^=60°.

Khi đó các tam giác MNT, MRS và MPQ là các tam giác đều.

Tam giác MNT đều có MD  NT nên D là trung điểm của NT.

Tam giác MRS đều có ME  RS nên E là trung điểm của RS.

Tam giác MPQ đều có MF PQ nên F là trung điểm của PQ.

Do D là trung điểm của NT nên MN+MT=2MD.

Do E là trung điểm của RS nên MR+MS=2ME.

Do F là trung điểm của PQ nên MP+MQ=2MF.

Do đó 2MD+2ME+2MF=MN+MT+MR+MS+MP+MQ

=MN+MQ+MT+MR+MS+MP

Tứ giác MNBQ có MN // BQ và MQ // BN nên MNBQ là hình bình hành.

Tứ giác MTCR có MT // CR và MR // CT nên MTCR là hình bình hành.

Tứ giác MSAP có MP // AS và MS // AP nên MSAP là hình bình hành.

Khi đó áp dụng quy tắc hình bình hành ta có:

MN+MQ=MBMT+MR=MCMS+MP=MA.

Do đó MN+MQ+MT+MR+MS+MP=MA+MB+MC.

Do O là trọng tâm của tam giác ABC nên MA+MB+MC=3MO hay

2MD+2ME+2MF=3MO.

Do đó MD+ME+MF=32MO.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Bài 1: Số gần đúng và sai số

Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Câu hỏi cùng chủ đề

Xem tất cả