Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Vẽ điểm E sao cho vectơ CE = vectơ AN (Hình 1)

Bài 4 trang 102 Toán lớp 10 Tập 1Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Vẽ điểm E sao cho CE=AN (Hình 1).

Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC

a) Tìm tổng của các vectơ NC và MCAM và CDAD và NC.

b) Tìm các vectơ hiệu: NCMC;   ACBC;  ABME.

c) Chứng minh AM+AN=AB+AD

Trả lời

M là trung điểm của BC nên BM = MC = 12BC.

N là trung điểm của AD nên AN = ND = 12AD.

Do ABCD là hình bình hành nên BC = AD.

Do đó BM = MC = AN = ND.

Do CE=AN nên CE = AN.

Do đó BM = MC = AN = ND = CE.

Khi đó ta có AMCN, NCED là các hình bình hành.

a) +) Tính NC+MC:

Ta có MC=CE nên NC+MC=NC+CE=NE.

+) Tính AM+CD:

Ta có AM=NC nên AM+CD=NC+CD=ND.

+) Tính AD+NC:

Ta có NC=AM nên AD+NC=AD+AM=AE.

b) +) Tính NCMC:

Ta có NCMC=NM.

+) Tính ACBC:

Ta có ACBC=AB.

+) Tính ABME:

Ta có ME=AD nên ABME=ABAD=DB.

c) Ta có AM+AN=AC và AB+AD=AC.

Do đó AM+AN=AB+AD.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Bài 1: Số gần đúng và sai số

Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

 

Câu hỏi cùng chủ đề

Xem tất cả