Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng? A. Nếu b^2 + c^2 – a^2

Bài 5 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng?

A. Nếu b2 + c2 – a2 > 0 thì góc A nhọn;

B. Nếu b2 + c2 – a2 > 0 thì góc A tù;

C. Nếu b2 + c2 – a2 < 0 thì góc A nhọn;

D. Nếu b2 + c2 – a2 < 0 thì góc A vuông.

 

Trả lời

Đáp án đúng là A

Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA

Nếu b2 + c2 – a2 > 0 hay b2 + c2 > a2 thì 2bccosA > 0 hay cosA > 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó A^ < 90° hay góc A nhọn.

Nếu b2 + c2 – a2 < 0 hay b2 + c2 < a2 thì 2bccosA < 0 hay cosA < 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó A^ > 90° hay góc A tù.

Như vậy đáp án đúng là A.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Giá trị lượng giác của  góc từ 0° đến 180°

Bài 2: Định lí côsin và định lí sin

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Câu hỏi cùng chủ đề

Xem tất cả