Cho tam giác ABC không vuông. Chứng minh rằng: tanA/ tanB = (c^2 + a^2 - b^2)/ (c^2 + b^2 - a^2)

Bài 6 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC không vuông. Chứng minh rằng:

tanAtanB=c2+a2b2c2+b2a2.

Trả lời

Theo định lí côsin ta có: a2 = b2 + c2 – 2bcosA

⇒ cosA = b2+c2a22bc

Tương tự: cosB = a2+c2b22ac

Theo định lí côsin ta có: asinA=bsinB=2R

⇒ sinA = a2R và sinB = b2R

Ta có:

tanAtanB=sinAcosA​.cosBsinB=a2R.2bcb2+c2a2.a2+c2b22ac.2Rb = c2+a2b2c2+b2a2 (ĐPCM).

 

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Giá trị lượng giác của  góc từ 0° đến 180°

Bài 2: Định lí côsin và định lí sin

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Câu hỏi cùng chủ đề

Xem tất cả