Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng: cosA/ a + cosB/b + cosC/c

Bài 1 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng:

cosAa+cosBb+cosCc=a2 + b2 + c22abc.

Trả lời

Theo định lí côsin: a2 = b2 + c2 – 2bccosA

⇒ cosA = b2+c2a22bc

⇒ cosAa = b2+c2a22abc.

Tương tự ta có:

cosB b = a2+c2b22abc và cosCc = a2+b2c22abc

Như vậy: cosAa+cosBb+cosCc = b2+c2a22abc + a2+c2b22abc + a2+c2b22abc

⇒ cosAa+cosBb+cosCc=a2 + b2 + c22abc. ( ĐPCM ).

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Giá trị lượng giác của  góc từ 0° đến 180°

Bài 2: Định lí côsin và định lí sin

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Câu hỏi cùng chủ đề

Xem tất cả