Cho hình vuông ABCD. Lấy điểm M thuộc đường chéo BD. Kẻ ME vuông góc với AB tại E, MF vuông góc với AD tại F
436
02/11/2023
Bài 44 trang 104 SBT Toán 8 Tập 1: Cho hình vuông . Lấy điểm thuộc đường chéo . Kẻ vuông góc với tại , vuông góc với tại .
a) Chứng minh: .
b) Chứng minh ba đường thẳng cùng đi qua một điểm.
c) Xác định vị trí của điểm trên đường chéo để diện tích của tứ giác lớn nhất.
Trả lời
Gọi là giao điểm của và , là giao điểm của và .
Do là hình vuông nên ta có:
a) Ta chứng minh được tam giác vuông cân tại .
Suy ra
Tứ giác có nên là hình chữ nhật. Suy ra .
Do đó (vì cùng bằng )
(c.g.c). Suy ra , .
Trong tam giác vuông tại , ta có:
Suy ra hay . Từ đó ta tính được . Vậy .
b) Tương tự câu a, ta chứng minh được .
(c.g.c). Suy ra . Mà (vì là hình chữ nhật) suy ra .
(c.c.c). Suy ra hay
Trong tam giác vuông tại , ta có
Suy ra hay . Từ đó, ta tính được . Do đó, .
Trong tam giác , ta có: nên ba đường thẳng là các đường cao của tam giác . Vậy ba đường thẳng cùng đi qua một điểm.
c) Chu vi của hình chữ nhật là:
Mà không đổi nên chu vi của hình chữ nhật không đổi. Do đó, diện tích của tứ giác lớn nhất khi là hình vuông. Suy ra .
Khi đó (cạnh góc vuông – góc nhọn kề). Suy ra hay là trung điểm của
Vậy với là trung điểm của thì diện tích của tứ giác lớn nhất.
Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:
Bài 3: Hình thang cân
Bài 4: Hình bình hành
Bài 5: Hình chữ nhật
Bài 6: Hình thoi
Bài 7: Hình vuông
Bài tập cuối chương 5 trang 103