Cho hình bình hành ABCD có BC = 2AB. Gọi M,N lần lượt là trung điểm của BC,AD
340
02/11/2023
Bài 43 trang 104 SBT Toán 8 Tập 1: Cho hình bình hành có . Gọi lần lượt là trung điểm của
a) Chứng minh tứ giác là hình bình hành.
b) Gọi là giao điểm của và là giao điểm của và . Chứng minh tứ giác là hình chữ nhật.
c) Tìm điều kiện của hình bình hành để tứ giác là hình vuông.
d) Tính diện tích của tứ giác , biết .
Trả lời
a) Do là hình bình hành nên và
Mà nên
Lại có lần lượt là trung điểm của nên
Do đó
Tứ goác có và nên là hình bình hành.
b) Tương tự câu a, ta chứng minh được là hình bình hành.
Do đều là hình bình hành nên . Suy ra tứ giác là hình bình hành.
(c.g.c). Suy ra .
Tứ giác có nên là hình thoi. Suy ra
Hình bình hành có nên là hình chữ nhật.
c) Để hình chữ nhật là hình vuông thì .
Mà là hình thoi nên là hình bình hành. Suy ra cắt nhau tại trung điểm của mỗi đường. mà , suy ra
Hình bình hành có nên là hình chữ nhật
Suy ra hay
Hình bình hành có nên là hình chữ nhật.
Dễ thấy, nếu hình bình hành là hình chữ nhật và thì là hình vuông.
Vậy điều kiện của hình bình hành để là hình vuông là hình bình hành là hình chữ nhật có .
d) Ta có: nên
Do là hình thoi nên là tia phân giác của
Suy ra
Tam giác có và nên tam giác đều.
Suy ra
Do là trung điểm của nên
Trong tam giác vuông tại , ta có:
Suy ra . Do đó cm
Do là hình chữ nhật nên diện tích của là:
.
Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:
Bài 3: Hình thang cân
Bài 4: Hình bình hành
Bài 5: Hình chữ nhật
Bài 6: Hình thoi
Bài 7: Hình vuông
Bài tập cuối chương 5 trang 103