Câu hỏi:
03/04/2024 28
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SBC} \right)\] là:
A. Đường thẳng qua \[S\] và song song với \[AB\]
B. Đường thẳng \[SO\].
C. Đường thẳng qua \[S\] và song song với \[AD\].
D. Không có giao tuyến.
Trả lời:
Đáp án C
Phương pháp:
\[\left\{ \begin{array}{l}a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\\a//b\end{array} \right. \Rightarrow \] Giao tuyến của hai mặt phẳng \[\left( \alpha \right)\] và \[\left( \beta \right)\] là đường thẳng đi qua điểm chung của hai mặt phẳng và song song với \[a,b\].
Cách giải:
Xác định \[\left( {SAD} \right) \cap \left( {SBC} \right)\].
+ \[S\] là điểm chung thứ nhất.
+ Ta có \[\left\{ \begin{array}{l}AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\\AD//BC\end{array} \right.\]
Do đó giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SBC} \right)\] là đường thẳng đi qua \[S\] và song song với \[AD\].
Đáp án C
Phương pháp:
\[\left\{ \begin{array}{l}a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\\a//b\end{array} \right. \Rightarrow \] Giao tuyến của hai mặt phẳng \[\left( \alpha \right)\] và \[\left( \beta \right)\] là đường thẳng đi qua điểm chung của hai mặt phẳng và song song với \[a,b\].
Cách giải:
Xác định \[\left( {SAD} \right) \cap \left( {SBC} \right)\].
+ \[S\] là điểm chung thứ nhất.
+ Ta có \[\left\{ \begin{array}{l}AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\\AD//BC\end{array} \right.\]
Do đó giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SBC} \right)\] là đường thẳng đi qua \[S\] và song song với \[AD\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 2:
Cho hình đa giác đều \[\left( H \right)\] có 36 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình \[\left( H \right)\]. Tính xác suất để 4 đỉnh được chọn tạo thành hình vuông?
Câu 3:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 4:
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
Câu 5:
Từ một hộp chứa 12 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
Câu 6:
Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:
Câu 7:
Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
Câu 8:
Sắp xếp 6 chữ cái H, S, V, H, S, N thành một hàng. Tính xác suất sao cho 2 chữ cái giống nhau đứng cạnh nhau?
Câu 9:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
Câu 10:
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];
1) Giải các phương trình sau:
a) \[2\sin x + \sqrt 2 = 0\];
b) \[\sqrt 3 \sin x - \cos x + 2 = 0\];