Cho hàm số y=f(x) có đồ thị như Hình 1. Tại mỗi điểm x0 = 1 và x0 = 2, có tồn tại giới hạn lim (x->x0) f(x) không
195
16/06/2023
Hoạt động khám phá 1 trang 80 Toán 11 Tập 1: Cho hàm số có đồ thị như Hình 1.
Tại mỗi điểm x0 = 1 và x0 = 2, có tồn tại giới hạn không? Nếu có, giới hạn đó có bằng f(x0) không?
Trả lời
+) Tại x0 = 1 ta có:
Dãy (xn) bất kì thỏa mãn xn < 1 và xn → 1 thì f(xn) = 1 khi đó .
Dãy (xn) bất kì thỏa mãn 1 < xn ≤ 2 và xn → 1 thì f(xn) = 1 + xn khi đó .
Suy ra . Do đó không tồn tại .
+) Tại x0 = 2
Dãy (xn) bất kì thỏa mãn xn < 2 và xn → 2 thì f(xn) = 1 + xn khi đó .
Dãy (xn) bất kì thỏa mãn 2 < xn ≤ 3 và xn → 2 thì f(xn) = 5 – xn khi đó .
Suy ra . Do đó .
Ta có f(2) = 1 + 2 = 3.
Vì vậy .
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giới hạn của dãy số
Bài 2: Giới hạn của hàm số
Bài 3: Hàm số liên tục
Bài tập cuối chương 3
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song