Giải SGK Toán 11 (Chân trời sáng tạo): Bài tập cuối chương 3

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 11 Bài tập cuối chương 3 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài tập cuối chương 3

Bài tập

Bài 1 trang 85 Toán 11 Tập 1: limn+3n2 bằng:

A. 1;

B. 0;

C. 3;

D. 2.

Lời giải:

Đáp án đúng là B

Ta có: limn+3n2=lim1n+3n21=0.

Bài 2 trang 85 Toán 11 Tập 1: Tổng của cấp số nhân lùi vô hạn:

M=1+14+142+...+14n+... bằng:

A. 34;

B. 54;

C. 43;

D. 65.

Lời giải:

Đáp án đúng là C

Cấp số nhân lùi vô hạn đã cho có số hạng đầu u1 = 1 và công bội q = 14 có tổng bằng:

M=1+14+142+...+14n+...=1114=43.

Bài 3 trang 85 Toán 11 Tập 1: limx3x29x3 bằng

A. 0;

B. 6;

C. 3;

D. 1.

Lời giải:

Đáp án đúng là B

Ta có: limx3x29x3=limx3x+3x3x3=limx3x+3=6.

Bài 4 trang 85 Toán 11 Tập 1: Hàm số: f(x) = Bài 4 trang 85 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 liên tục tại x = 2 khi

A. m = 3;

B. m = 5;

C. m = – 3;

D. m = – 5.

Lời giải:

Đáp án đúng là D

Ta có: limx2+fx=limx2+x2+2x+m=m+8

limx2fx=limx23=3

Để hàm số liên tục tại x = 2 thì m + 8 = 3 ⇔ m = – 5.

Vậy với m = – 5 thì hàm số đã cho liên tục tại x = 2.

Bài 5 trang 85 Toán 11 Tập 1: limx+2x1x bằng

A. 2;

B. – 1;

C. 0;

D. 1.

Lời giải:

Đáp án đúng là A

Ta có: limx+2x1x=limx+21x1=2.

Bài tập tự luận

Bài 6 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) lim3n1n;

b) limn2+2n;

c) lim23n+1;

d) lim(n+1)2n+2n2.

Lời giải:

a) lim3n1n=lim31n1=3.

b) limn2+2n=lim1+2n21=1.

c) lim23n+1=lim2n3+1n=0.

d) lim(n+1)2n+2n2=lim2n2+4n+2n2=lim2+4n+2n21=2.

Bài 7 trang 86 Toán 11 Tập 1: Cho tam giác đều có cạnh bằng a, gọi là tam giác H1. Nỗi các trung điểm của H1 để tạo thành tam giác H2. Tiếp theo, nối các trung điểm của H2 để tạo thành tam giác H3 (Hình 1). Cứ tiếp tục như vậy, nhận được dãy tam giác H1, H2, H3, ...

Tỉnh tổng chu vi và tổng diện tích của các tam giác của dãy.

Bài 7 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có:

Diện tích tam giác H1 = S và chu vi tam giác H1 = 3a;

Diện tích tam giác H2 = 14S và chu vi tam giác H2 = 123a;

Diện tích tam giác H2 = 142S và chu vi tam giác H3 = 1223a;

...

Diện tích tam giác Hn = 14n1S và chu vi tam giác H2 = 12n13a;

Khi đó:

Diện tích của dãy các tam giác H1; H2; H3; ...; H4 lập thành một cấp số nhân lùi vô hạn có số hạng đầu tiên u1 = S và công bội q = 14 có tổng bằng S+14S+142S+...+14n1S+...=S114=43S.

Diện tích của dãy các tam giác H1; H2; H3; ...; H4 lập thành một cấp số nhân lùi vô hạn có số hạng đầu tiên u1 = 3a và công bội q = 12 có tổng bằng

3a+12.3a+122.3a+123.3a+...+12n13a+...=3a112=6a.

Bài 8 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx13x2x+2;

b) limx4x216x4;

c) limx23x+7x2.

Lời giải:

a) limx13x2x+2=6.

b) limx4x216x4=limx4x4x+4x4=limx4x+4=8.

c) limx23x+7x2=limx22x3+x+7x2=limx23x+7=6.

Bài 9 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx+x+2x+1;

b) limxx2x2.

Lời giải:

a) limx+x+2x+1=limx+1+2x1+1x=1.

b) limxx2x2=limx1x2x21=0.

Bài 10 trang 86 Toán 11 Tập 1: Tìm các giới hạn sau:

a) limx4+1x4;

b) limx2+x2x.

Lời giải:

a) limx4+1x4=+.

b) limx2+x2x=limx2+x.limx2+12x=+.

Bài 11 trang 86 Toán 11 Tập 1: Xét tính liên tục của hàm số f(x) = Bài 11 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Lời giải:

+) Với x ∈ (0; + ∞) ta có f(x) = x+4 liên tục.

+) Với x ∈ (– ∞; 0) ta có f(x) = 2cosx liên tục.

+) Tại x = 0, ta có:

limx0+fx=limx0+x+4=2;

limx0fx=limx02cosx=2.

Suy ra limx0fx=limx0+fx=limx0fx=2=f0

Do đó hàm số liên tục tại x = 0.

Vậy hàm số liên tục trên ℝ.

Bài 12 trang 86 Toán 11 Tập 1: Cho hàm số f(x) = Bài 12 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11. Tìm a để hàm số y = f(x) liên tục trên ℝ.

Lời giải:

+) Với mọi x ≠ 5 thì f(x) = x225x5 liên tục.

+) Tại x = 5, ta có:

limx5fx=limx5x225x5=limx5x5x+5x5=limx5x+5=10.

f(5) = a

Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 5 khi a = 10.

Bài 13 trang 86 Toán 11 Tập 1: Trong một tủ thí nghiệm, nhiệt độ trong tủ sấy được điều khiển tăng từ 10°C, mỗi phút tăng 2°C trong 60 phút, sau đó giảm mỗi phút 3°C trong 40 phút. Hàm số biểu thị nhiệt độ (tính theo ºC) trong tủ theo thời gian t (tính theo phút) có dạng

T(t) = Bài 13 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (k là hằng số).

Biết rằng T(t) là hàm liên tục trên tập xác đinh. Tìm giá trị của k.

Lời giải:

+) Với 0 ≤ t < 60 thì T(t) = 10 + 2t là hàm số liên tục.

+) Với 60 < t ≤ 100 thì T(t) = k – 3t là hàm số liên tục.

+) Tại t = 60, ta có:

limt60Tt=limt6010+2t=130

limt60+Tt=limt60k3t=k180

Để hàm số liên tục trên tập xác định [0; 100] thì hàm số liên tục tại x = 60

⇔ k – 180 = 130

⇔ k = 240.

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song

Bài 3: Đường thẳng và mặt phẳng song song

Câu hỏi liên quan

Đáp án đúng là B
Xem thêm
k = 240.
Xem thêm
Ta có:
Xem thêm
Đáp án đúng là D
Xem thêm
Để hàm số liên tục trên ℝ thì hàm số phải liên tục tại x = 5 khi a = 10.
Xem thêm
Đáp án đúng là C
Xem thêm
Đáp án đúng là B
Xem thêm
Đáp án đúng là A
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Bài tập cuối chương 3 trang 85, 86
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!