Xét tính chẵn lẻ của các hàm số sau: a) y = sin 2x + tan 2x

Bài 1.15 trang 30 Toán 11 Tập 1Xét tính chẵn lẻ của các hàm số sau:

a) y = sin 2x + tan 2x;

b) y = cos x + sin2 x;

c) y = sin x cos 2x;

d) y = sin x + cos x.

 

Trả lời

a) Biểu thức sin 2x + tan 2x có nghĩa khi cos 2x ≠ 0 (do tan2x=sin2xcos2x ), tức là 2xπ2+kπ,kxπ4+kπ2,k.

Suy ra tập xác định của hàm số y = f(x) = sin 2x + tan 2x là D=\π4+kπ2|k .

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = sin (– 2x) + tan (– 2x) = – sin 2x – tan 2x = – (sin 2x + tan 2x) = – f(x), ∀ x ∈ D.

Vậy y = sin 2x + tan 2x là hàm số lẻ.

b) Tập xác định của hàm số y = f(x) = cos x + sin2 x là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = cos (– x) + sin2 (– x) = cos x + (– sin x)2 = cos x + sin2 x = f(x), ∀ x ∈ D.

Vậy y = cos x + sin2 x là hàm số chẵn.

c) Tập xác định của hàm số y = f(x) = sin x cos 2x là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = sin (– x) . cos (– 2x) = – sin x . cos 2x = – f(x), ∀ x ∈ D.

Vậy y = sin x cos 2x là hàm số lẻ.

d) Tập xác định của hàm số y = f(x) = sin x + cos x là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = sin (– x) + cos (– x) = – sin x + cos x ≠ – f(x).

Vậy y = sin x + cos x là hàm số không chẵn, không lẻ.

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 1: Giá trị lượng giác của góc lượng giác

Bài 2: Công thức lượng giác

Bài 3: Hàm số lượng giác

Bài 4: Phương trình lượng giác cơ bản

Bài tập cuối chương 1

Câu hỏi cùng chủ đề

Xem tất cả