Giải SGK Toán 11 (Chân trời sáng tạo) Bài 3: Đường thẳng và mặt phẳng song song

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 11 Bài 3: Đường thẳng và mặt phẳng song song sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 3. Mời các bạn đón xem:

Giải Toán 11 Bài 3: Đường thẳng và mặt phẳng song song

Hoạt động khởi động trang 107 Toán 11 Tập 1: Đường thẳng a trên mép hiên của tòa nhà có điểm nào chung với mặt (P) của phố đi bộ Nguyễn Huệ không?

Hoạt động khởi động trang 107 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Đường thẳng a và mặt phẳng (P) không có điểm chung với nhau.

1. Đường thẳng song song với mặt phẳng

Hoạt động khám phá 1 trang 107 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABMN không đồng phẳng. Tìm số giao điểm của mặt phẳng (ABCD) lần lượt với các đường thẳng MN, MA và AC.

Hoạt động khám phá 1 trang 107 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Số điểm chung của MN với mặt phẳng (ABCD) là 0;

+) Số điểm chung của MA với mặt phẳng (ABCD) là 1 điểm (chính là điểm A);

+) Số điểm chung của AC với mặt phẳng (ABCD) là vô số điểm (chính là đường thẳng AC).

Thực hành 1 trang 108 Toán 11 Tập 1: Cho E và F lần lượt là trung điểm các cạnh AB và AC của tứ diện ABCD. Xác định vị trí tương đối của các đường thẳng BC, AD và EF với mặt phẳng (BCD).

Thực hành 1 trang 108 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) BC có hai điểm chung B và C với mặt phẳng (BCD), suy ra BC ⊂ (BCD).

+) AD có một điểm chung duy nhất D với mặt phẳng (BCD), suy ra AD cắt (BCD) tại D.

+) Nếu EF có điểm chung O với (BCD) thì O thuộc giao tuyến BC của hai mặt phẳng (ABC) và (BCD), suy ra EF cắt BC (mâu thuẫn với giải thiết EF là đường trung bình của tam giác ABC).

2. Điều kiện để một đường thẳng song song với một mặt phẳng

Hoạt động khám phá 2 trang 108 Toán 11 Tập 1: Cho đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nằm trong (P). Đặt (Q) = mp(a, b).

Hoạt động khám phá 2 trang 108 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Tìm giao tuyến của hai mặt phẳng (P) và (Q).

b) Giả sử a có điểm chung M với (P) thì điểm M phải nằm trên đường thẳng nào? Điều này có trái ngược với giả thiết a // b hay không?

Lời giải:

a) Ta có: Hoạt động khám phá 2 trang 108 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

b) Theo giả thiết ta có: M ∈ a

Mà (P) ∩ (Q) = {b} nên M ∈ b

Suy ra đường thẳng a phải cắt đường thẳng b điều này là trái với giả thiết a // b.

Thực hành 2 trang 109 Toán 11 Tập 1: Cho hình chóp S.ABC có A’, B’, C’ lần lượt là trung điểm của SA, SB, SC. Tìm các đường thẳng lần lượt nằm trong, cắt, song song với mặt phẳng (ABC).

Thực hành 2 trang 109 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Ta có: đường thẳng AB chứa hai điểm A, B thuộc (ABC), suy ra AB ⊂ (ABC).

Tương tự ta có BC ⊂ (ABC), AC ⊂ (ABC)

Vì vậy các đường thẳng nằm trong mặt phẳng (ABC) là: AB, BC, AC.

+) Ta có: đường thẳng SA có điểm A chung với (ABC), duy ra SA cắt (ABC) tại A.

Tương tự ta có: SB, SC lần lượt cắt (ABC) tại B, C.

Vì vậy các đường thẳng cắt mặt phẳng (ABC) là: SA, SB, SC.

+) Ta có: A’B’ // AB mà AB ⊂ (ABC) nên A’B’ // (ABC).

Tương tự ta có: A’C’ // (ABC) và B’C’ // (ABC).

Vận dụng 1 trang 109 Toán 11 Tập 1: Hãy chỉ ra trong Hình 9 các đường thẳng lần lượt nằm trong, song song, cắt mặt phẳng sàn nhà.

Vận dụng 1 trang 109 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Các đường thẳng trên trần nhà song song với mặt sàn do không có điểm chung với mặt sàn.

Các đường thẳng ở góc tường, trên bốn bức tường là các đường thẳng cắt mặt sàn.

Các đường thẳng nằm trong mặt sàn là các đường thẳng nằm ở trên sàn.

3. Tính chất cơ bản của đường thẳng và mặt phẳng song song

Hoạt động khám phá 3 trang 109 Toán 11 Tập 1: Cho đường thẳng a song song với mặt phẳng (P), mặt phẳng (Q) chứa a và cắt (P) theo giao tuyết b (Hình 10). Trong (Q), hai đường thẳng a, b có bao nhiêu điểm chung?

Hoạt động khám phá 3 trang 109 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Nếu đường thẳng a cắt đường thẳng b tại một điểm M thì M ∈ (P), suy ra a và (P) có một điểm chung là M điều này trái với giả thiết là đường thẳng a // (P).

+) Nếu đường thẳng a và đường thẳng b trùng nhau thì a ⊂ (P), suy ra a và (P) có vô số điểm chung điều này trái với giả thiết là đường thẳng a // (P).

+) Nếu đường thẳng a song song với đường thẳng b thì a và b không có điểm chung nên điều này phù hợp với giả thiết là đường thẳng a // (P).

Vậy trong (Q) hai đường thẳng a và b không có điểm chung nào.

Hoạt động khám phá 4 trang 110 Toán 11 Tập 1: Cho hai đường thẳng chéo nhau a, b. Lấy một điểm M trên a, vẽ đường thẳng b’ đi qua M và song song với b. Đặt (P) là mặt phẳng đi qua a, b’.

a) Có nhật xét gì về mối liên hệ giữa b và (P).

b) Gọi (P’) là mặt phẳng chứa a và song song với b. Có nhận xét gì về mối liên hệ giữa b’ và (P’); (P) và (P’)?

Lời giải:

a) Ta có: đường thẳng a và b chéo nhau nên a và b không đồng phẳng do đó b không nằm trong mặt phẳng (P)

Ta lại có: b // b’ mà b’ ⊂ (P) nên b // (P).

b) Ta có: b // (P’) , M ∈ a ⊂ (P’) , b’ // b nên b’ ⊂ (P’).

Ta lại có: (P) = mp(a, b) = mp(a’, b’) = (P’).

Thực hành 3 trang 111 Toán 11 Tập 1: Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng:

a) MN song song với hai mặt phẳng (SBC) và (SAD);

b) SB và SC song song với mặt phẳng (MNE).

Thực hành 3 trang 111 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Trong mặt phẳng (ABCD) có MN là đường trung bình của hình bình hành ABCD nên MN // BC// AD.

Ta có: MN // BC mà BC ⊂ (SBC) nên MN // (SBC).

Ta lại có: MN // AD mà AD ⊂ (SAD) nên MN // (SAD).

b)

Thực hành 3 trang 111 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trong mặt phẳng (ABCD) gọi O là giao điểm của AC và BD, khi đó O là trung điểm của AC.

+) Xét tam giác SAC có E là trung điểm của SA, O là trung điểm của AC nên EO là đường trung bình của tam giác. Do đó EO // SC.

Mặt khác EO ⊂ (MNE) nên SC // (MNE).

+) Xét tam giác SAB có E là trung điểm của SA, M là trung điểm của AB nên EM là đường trung bình của tam giác. Do đó EM // SB.

Mặt khác EM ⊂ (MNE) nên SB // (MNE).

Vận dụng 2 trang 111 Toán 11 Tập 1: Làm thế nào để đặt cây thước kẻ a để nó song song với các trang của một cuốn sách?

Vận dụng 2 trang 111 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Gọi mỗi nửa sách là một mặt phẳng có tên lần lượt là (P) và (Q).

Đường thẳng b là giao điểm của hai mặt phẳng (P) và (Q).

Để đường thẳng a // (P) và a // (Q) thì a // b .

Vậy ta chỉ cần đặt thước kẻ a song song với lề sách thì a sẽ song song với các trang của cuốn sách.

Vận dụng 2 trang 111 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài tập

Bài 1 trang 111 Toán 11 Tập 1: Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm hai đường chéo. Gọi M là trung điểm của SC.

a) Chứng minh đường thẳng OM song song với hai mặt phẳng (SAD) và (SBD).

b) Tìm giao tuyến của hai mặt phẳng (OMD) và (SAD).

Lời giải:

Bài 1 trang 111 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Trong mặt phẳng (SAC) có OM // SA mà SA ⊂ (SAD) nên OM // (SAD).

Mặt khác SA ⊂ (SAB) nên OM // (SAB).

b) Ta có: D ∈ (OMD) ∩ (SAD) mà OM // SA nên giao tuyến của hai mặt phẳng (OMD) và (SAD) là đường thẳng s đi qua D và song song với SA.

Bài 2 trang 112 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không nằm trong cùn một mặt phẳng. Gọi O và O’ lần lượt là tâm của ABCD và ABEF.

a) Chứng minh đường thẳng OO’ song song với các mặt phẳng (CDEF), (ADF) và (BCE).

b) Gọi M và N lần lượt là trung điểm của AF và BE. Chứng minh MN // (CDFE).

c) Tìm giao tuyến của hai mặt phẳng (OMN) và (ABCD).

Lời giải:

Bài 2 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Vì O là tâm hình bình hành ABCD nên O là trung điểm AC và BD, O’ là tâm của hình bình hành ABEF nên O’ là trung điểm AE và BF.

+) Ta có: OO’ // FD (tính chất đường trung bình trong tam giác BDF), mà FD ⊂ (CDEF). Do đó OO’ // (CDEF).

+) Ta lại có: FD ⊂ (ADF) nên OO’ // (ADF).

+) Ta có: OO’ // EC (tính chất đường trung bình trong tam giác ACE), mà EC ⊂ (BCE). Do đó OO’ // (BCE).

b) Vì M và N lần lượt là trung điểm của AF và BE nên MN là đường trung bình của ABEF, suy ra MN // EF mà EF ⊂ (CDEF). Do đó MN // (CDEF).

c) Ta có MN // AB mà AB ⊂ (ABCD) và MN ⊂ (OMN)

Ta lại có: O ∈ (OMN) ∩ (ABCD)

Do đó giao tuyến của (OMN) và (ABCD) là đường thẳng đi d qua O và song song với AB.

Bài 3 trang 112 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD. Một mặt phẳng (α) qua M, song song với CD và SA, cắt BC, SC, SD lần lượt N, P, Q.

a) MNPQ là hình gì?

b) Gọi I = MQ ∩ NP. Chứng minh rằng I luôn luôn thuộc một đường thẳng cố định khi M di động trên AD.

Lời giải:

Bài 3 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Trong mặt phẳng (ABCD), từ M kẻ đường thẳng song song CD cắt BC tại N.

Gọi K là giao điểm của MN và AC.

Trong mặt phẳng (SAC), từ K kẻ đường thẳng song song với SA cắt SC tại P.

Trong mặt phẳng (SCD), từ P kẻ đường thẳng song song với CD cắt SD ở Q.

Mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.

b) Gọi d là giao tuyến của (SAD) ∩ (SBC)

Ta có: Bài 3 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Mà S ∈ (SAD) ∩ (SBC) nên S ∈ d

Ta lại có: Bài 3 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Do đó I ∈ d

Vì vậy I thuộc đường thẳng d cố định đi qua S và song song với AD.

Bài 4 trang 112 Toán 11 Tập 1: Cho tứ diện ABCD và điểm M thuộc cạnh AB. Gọi (α) là mặt phẳng qua M, song song với hai đường thẳng BC và AD. Gọi N, P, Q lần lượt là giao điểm của mặt phẳng (α) với các cạnh AC, CD và DB.

a) Chứng minh MNPQ là hình bình hành.

b) Trong trường hợp nào thì MNPQ là hình thoi?

Lời giải:

Bài 4 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Trong mặt phẳng (ABC) từ điểm M kẻ đường thẳng song song với BC cắt AC tại N.

Trong mặt phẳng (ACD) từ điểm N kẻ đường thẳng song song với AD cắt cạnh CD tại P.

Trong mặt phẳng (BCD) từ điểm P kẻ đường thẳng song song với BC cắt cạnh BD tại Q.

Nối M với Q lại ta được mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.

Xét tứ giác MNPQ, có:

MN // QP (cùng // BC)

MQ // NP (cùng //AD)

Do đó tứ giác MNPQ là hình bình hành (theo dấu hiệu nhận biết).

b) Để tứ giác MNPQ là hình thoi thì MN = NP, điều này xảy ra trong trường hợp M là trung điểm của AB và AD = BC.

Bài 5 trang 112 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là trung điểm của CD, (P) là mặt phẳng qua M song song với SA và BC. Tìm giao tuyến của (P) với các mặt của hình chóp S.ABCD.

Lời giải:

Bài 5 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

+) Giao tuyến của (P) và (ABCD):

Từ điểm M kẻ đường thẳng song song với BC cắt AB tại N

Suy ra giao tuyến của (P) và (ABCD) là MN.

+) Giao tuyến của (P) và (SAB):

Từ điểm N kẻ đường thẳng song song với SA cắt SB tại P

Suy ra giao tuyến của (P) và (SAB) là NP.

+) Giao tuyến của (P) và (SBC):

Từ điểm P kẻ đường thẳng song song với BC cắt SC tại Q

Suy ra giao tuyến của (P) và (SBC) là PQ.

+) Giao tuyến của (P) và (SDC) là MQ.

+) Giao tuyến của (P) và (SAD):

Kéo dài MN cắt AD tại K, từ K kẻ đường thẳng d song song với SA.

Suy ra giao tuyến (P) và (SAD) là d.

Bài 6 trang 112 Toán 11 Tập 1: Mô tả vị trí tương đối của các đường thẳng a, b, c, d, e với mặt phẳng (P) là mặt trước của tòa nhà (Hình 19).

Bài 6 trang 112 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Đường thẳng a và e nằm trong mặt phẳng (P).

Đường thẳng d cắt mặt phẳng (P) tại một điểm.

Đường thẳng b và đường thẳng c song song với mặt phẳng (P).

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Phép chiếu song song

Bài tập cuối chương 4

Câu hỏi liên quan

a) Trong mặt phẳng (SAC) có OM // SA mà SA ⊂ (SAD) nên OM // (SAD).
Xem thêm
a) Trong mặt phẳng (ABC) từ điểm M kẻ đường thẳng song song với BC cắt AC tại N.
Xem thêm
a) Trong mặt phẳng (ABCD), từ M kẻ đường thẳng song song CD cắt BC tại N.
Xem thêm
+) Giao tuyến của (P) và (ABCD):
Xem thêm
a) Trong mặt phẳng (ABCD) có MN là đường trung bình của hình bình hành ABCD nên MN // BC// AD.
Xem thêm
a) Vì O là tâm hình bình hành ABCD nên O là trung điểm AC và BD, O’ là tâm của hình bình hành ABEF nên O’ là trung điểm AE và BF.
Xem thêm
+) BC có hai điểm chung B và C với mặt phẳng (BCD), suy ra BC ⊂ (BCD).
Xem thêm
+) Ta có: đường thẳng AB chứa hai điểm A, B thuộc (ABC), suy ra AB ⊂ (ABC).
Xem thêm
Đường thẳng a và e nằm trong mặt phẳng (P).
Xem thêm
Gọi mỗi nửa sách là một mặt phẳng có tên lần lượt là (P) và (Q).
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Đường thẳng và mặt phẳng song song CTST
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!