Cho tam giác đều có cạnh bằng a, gọi là tam giác H1. Nỗi các trung điểm của H1 để tạo thành tam giác H2. Tiếp theo, nối các trung điểm của H2

Bài 7 trang 86 Toán 11 Tập 1: Cho tam giác đều có cạnh bằng a, gọi là tam giác H1. Nỗi các trung điểm của H1 để tạo thành tam giác H2. Tiếp theo, nối các trung điểm của H2 để tạo thành tam giác H3 (Hình 1). Cứ tiếp tục như vậy, nhận được dãy tam giác H1, H2, H3, ...

Tỉnh tổng chu vi và tổng diện tích của các tam giác của dãy.

Bài 7 trang 86 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Trả lời

Ta có:

Diện tích tam giác H1 = S và chu vi tam giác H1 = 3a;

Diện tích tam giác H2 = 14S và chu vi tam giác H2 = 123a;

Diện tích tam giác H2 = 142S và chu vi tam giác H3 = 1223a;

...

Diện tích tam giác Hn = 14n1S và chu vi tam giác H2 = 12n13a;

Khi đó:

Diện tích của dãy các tam giác H1; H2; H3; ...; H4 lập thành một cấp số nhân lùi vô hạn có số hạng đầu tiên u1 = S và công bội q = 14 có tổng bằng S+14S+142S+...+14n1S+...=S114=43S.

Diện tích của dãy các tam giác H1; H2; H3; ...; H4 lập thành một cấp số nhân lùi vô hạn có số hạng đầu tiên u1 = 3a và công bội q = 12 có tổng bằng

3a+12.3a+122.3a+123.3a+...+12n13a+...=3a112=6a.

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song

Bài 3: Đường thẳng và mặt phẳng song song

Câu hỏi cùng chủ đề

Xem tất cả