Giải Sách bài tập Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
a) BM = CN;
b) Tam giác GBC là tam giác cân;
c) AG vuông góc với BC.
Lời giải
a) Vì tam giác ABC cân tại A nên AB = AC, .
Vì BM, CN là đường trung tuyến của tam giác ABC nên M, N lần lượt là trung điểm của AC và AB.
Do đó AM = MC, AN = NB.
Mà AB = AC
Suy ra AM = MC = AN = NB.
Xét ABM và ACN có:
AB = AC (chứng minh trên),
là góc chung,
AM = AN (chứng minh trên)
Do đó ∆ABM = ∆ACN (c.g.c).
Suy ra BM = CN (hai cạnh tương ứng).
Vậy BM = CN.
b) Do ∆AMB = ∆ANC (câu a) suy ra (hai góc tương ứng).
Ta có , .
Mà và .
Nên hay
Suy ra tam giác GBC cân tại G.
Vậy tam giác GBC cân tại G
c) Ta có AB = AC nên A nằm trên đường trung trực của đoạn thẳng BC.
Theo câu b tam giác GBC cân tại G nên GB = GC (hai cạnh bên).
Do đó G nằm trên trung trực của đoạn thẳng BC.
Suy ra AG là đường trung trực của đoạn thẳng BC nên AG vuông góc với BC tại trung điểm của BC.
Vậy AG vuông góc với BC.
a) Chứng minh CG là trung tuyến của tam giác ACD.
b) Chứng minh BG song song với CD.
c) Gọi I là trung điểm của BD; AI cắt BG tại F. Chứng minh AF = 2FI.
Lời giải
a) Vì G là trọng tâm tam giác ABC nên GM = GA.
Mà MD = MG (giả thiết) nên M là trung điểm của GD và GM = GD.
Suy ra GD = GA.
Do đó CG là trung tuyến của tam giác ACD.
Vậy CG là trung tuyến của tam giác ACD.
b) Xét BGM và CDM có:
GM = DM (giả thiết),
(hai góc đối đỉnh),
MB = MC (vì M là trung điểm của BC)
Nên ∆BGM = ∆CDM (c.g.c).
Suy ra (hai góc tương ứng).
Mà chúng ở vị trí so le trong nên BG // CD.
Vậy BG // CD.
c) Trong tam giác ABD có AI và BG là hai đường trung tuyến, AI và BG cắt nhau tại F.
Do đó F là trọng tâm của tam giác ABD.
Suy ra FI = FA hay AF = 2FI.
Vậy AF = 2FI.
Lời giải
Tam giác ABC có hai trung tuyến BM và CN bằng nhau.
Gọi G là giao điểm của BM và CN.
Theo tính chất trọng tâm tam giác có: BG = BM và CG = CN.
Vì BM = CN nên BG = CG.
Suy ra tam giác BGC cân tại G.
Do đó (hai góc ở đáy).
Xét MBC và NCB có:
BC là cạnh chung,
(do ),
MB = NC (giả thiết)
Do đó ∆MBC = ∆NCB (c.g.c)
Suy ra (hai góc tương ứng).
Khi đó tam giác ABC cân tại A.
Vậy nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Bài 73 trang 90 SBT Toán 7 Tập 2: Cho tam giác ABC đều và có G là trọng tâm.
b) Trên tia AG lấy điểm D sao cho GD = GA. Chứng minh tam giác BGD là tam giác đều.
Lời giải
a) • Do tam giác ABC đều nên AB = BC = AC.
Gọi M, N lần lượt là trung điểm của BC và AB.
Khi đó AN = NB = AB = BC = BM = MC.
Xét ABM và CBN có:
AB = BC (giả thiết),
là góc chung,
BM = BN (chứng minh trên)
Do đó ABM = CBN (c.c.c).
Suy ra AM = CN (hai cạnh tương ứng).
• Vì G là trọng tâm tam giác ABC
Nên AG = AM và CG = CN (tính chất trọng tâm của tam giác).
Mà AM = CN.
Suy ra GA = GC.
Chứng minh tương tự ta có GA = GB.
Do đó GA = GB = GC.
Vậy GA = GB = GC.
b) Ta có GA = GB (theo câu a) và GA = GD (giả thiết).
Nên GD = GB (1)
Ta có G là trọng tam giác ABC nên GM = GA.
Mà GA = GD nên GM = GD.
Do đó GM = MD = GD.
Xét GMC và DMB có:
MB = MC (chứng minh câu a),
(hai góc đối đỉnh),
MG = MD (chứng minh trên).
Do đó GMC = DMB (c.g.c)
Suy ra GC = DB (hai cạnh tương ứng).
Lại có GC = GB (theo câu a)
Nên GB = DB (2)
Từ (1) và (2) suy ra GD = GB = DB.
Do đó tam giác BGD là tam giác đều.
Vậy tam giác BGD là tam giác đều.
Lời giải
Xét tam giác ABC có BD và AM là các đường trung tuyến, BD cắt AM tại I.
Suy ra I là trọng tâm của tam giác ABC.
Nên BI = BD (1)
Xét tam giác AEC có ED và AN là các đường trung tuyến, ED cắt AN tại K.
Suy ra K là trọng tâm của tam giác AEC.
Nên (2)
Mặt khác BD = DE, DB + DE = BE
Nên BD = DE = BE (3)
Từ (1), (2) và (3) ta có:
BI = EK = BD = BE = BE.
Ta lại có: BI + IK + KE = BE.
Suy ra BE + IK + BE = BE
Suy ra IK = BE.
Do đó BI = IK = EK (cùng bằng BE).
Vậy BI = IK = EK.
Lời giải
Ta có: AM = BC, BM = MC nên AM = BM = MC.
Suy ra hai tam giác AMB và AMC cân tại M.
Do đó
Xét ABC có (tổng ba góc của một tam giác)
Suy ra hay
Nên
Do đó
Vậy .
Bài 76 trang 90 SBT Toán 7 Tập 2: Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho AE = AC.
a) Chứng minh E là trọng tâm tam giác BCD.
b) Gọi M là trung điểm DC. Chứng minh ba điểm B, M, E thẳng hàng.
Lời giải
a) Ta có AE = AC nên CE = AC
Trong tam giác BCD có CA là trung tuyến và CE = AC.
Suy ra E là trọng tâm tam giác BCD.
Vậy E là trọng tâm tam giác BCD.
b) Trong tam giác BCD có CA và BM là hai đường trung tuyến nên BM cắt CA tại trọng tâm của tam giác.
Mà E là trọng tâm của tam giác BCD (theo câu a) nên điểm E thuộc đường thẳng BM.
Hay ba điểm B, E, M thẳng hàng.
Vậy ba điểm B, E, M thẳng hàng.
a) Chứng minh BG = GC = CE = BE.
b) Chứng minh ∆ABE = ∆ACE.
c) Nếu CG = AE thì tam giác ABC là tam giác gì? Vì sao?
Lời giải
a) Xét tam giác ABC cân tại A nên AB = AC (hai cạnh bên).
Xét ABD và ACD có:
AB = AC (do ABC cân tại A),
DB = DC (do D là trung điểm của BC),
AD là cạnh chung
Do đó ABD = ACD (c.c.c)
Suy ra (hai góc tương ứng).
Mà (hai góc kề bù)
Nên
Suy ra AD vuông góc với BC.
Mặt khác D là trung điểm của BC
Do đó AD là đường trưng trực của đoạn thẳng BC.
Suy ra GB = GC (1)
Lại có điểm E nằm trên đường thẳng AD nên E cũng nằm trên đường trung trực của BC.
Do đó EB = EC (2)
Xét BGD và BED có:
,
BG là cạnh chung,
DG = DE (giả thiết)
Do đó ∆BGD = BED (hai cạnh góc vuông)
Suy ra BG = BE (3)
Từ (1), (2) và (3) suy ra BG = GC = CE = BE.
Vậy BG = GC = CE = BE.
b) Xét ABE và ACE có:
AB = AC (do ABC cân tại A),
BE = CE (chứng minh câu a),
AE là cạnh chung
Do đó ∆ABE = ∆ACE (c.c.c).
Vậy ∆ABE = ∆ACE.
c) Ta có GD = ED (giả thiết) nên GD = GE
Mà G là trọng tâm của tam giác ABC nên GD = AG.
Do đó AG = GE hay G là trung điểm của AE nên GE = AE.
Mặt khác CG = AE
Suy ra GE = GC.
Theo câu a ta lại có GC = EC.
Khi đó GC = GE = EC.
+) Tam giác CGE có GC = GE = EB nên tam giác CGE là tam giác đều
Do đó
Suy ra:
• (tổng hai góc nhọn trong tam giác vuông CGD bằng 90°)
Suy ra
• (hai góc kề bù)
Nên
Mà GA = GC nên tam giác AGC cân tại G, do đó
Lại có (tổng ba góc của tam giác AGC).
Do đó
+) Ta có (hai góc kề nhau)
Hay
Tam giác cân ABC có nên là tam giác đều.
Vậy tam giác ABC đều.
a) Chứng minh DE = FN và tam giác DFN là tam giác cân.
b) Trên tia đối của tia FD lấy điểm A sao cho FA = FD. Chứng minh F là trọng tâm của tam giác NEA.
c) Chứng minh tam giác DNA là tam giác vuông.
d) Kẻ EB vuông góc với NA (B ∈ NA). Chứng minh ba điểm E, F, B thẳng hàng.
Lời giải
a) Xét DME và FMN có:
DM = FM (vì M là trung điểm của DF),
(hai góc đối đỉnh),
ME = MN (giả thiết)
Do đó ∆DME = ∆FMN (c.g.c)
Suy ra DE = FN (hai cạnh tương ứng).
Vì tam giác DFE cân tại D nên DE = DF.
Do đó DE = DF = FN.
Tam giác DFN có DF = FN nên tam giác DFN cân tại F.
Vậy tam giác DFN cân tại F.
b) Ta có MD = MF = DF và FA = FD nên MF = FA
Mà AF + FM = AM nên AF + AF = AM
Suy ra AF = AM hay AF = AM.
Trong tam giác NEA có AM là trung tuyến và AF = AM nên F là trọng tâm của tam giác NEA.
Vậy F là trọng tâm của tam giác NEA.
c) • Ta có: DF = FN, DF = FA nên AF = FN.
Suy ra tam giác FNA cân tại F.
Do đó (hai góc ở đáy)
• Vì tam giác DFN cân tại F nên (hai góc ở đáy)
• Xét DNA có (tổng ba góc của một tam giác)
Suy ra
Hay
Suy ra
Do đó
Vậy tam giác DNA là tam giác vuông tại N.
d) Xét DMN và FME có:
DM = FM (vì M là trung điểm của DF),
(hai góc đối đỉnh),
EM = MN (giả thiết)
Do đó ∆DMN = ∆FME (c.g.c)
Suy ra (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Nên EF // DN
Lại có (chứng minh câu c) hay DN ⊥ NA.
Suy ra EF ⊥ NA (một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại).
Mặt khác EB ⊥ NA (giả thiết)
Suy ra ba điểm E, F, B cùng nằm trên một đường thẳng.
Vậy ba điểm E, F, B thẳng hàng.
Xem thêm lời giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 8. Đường vuông góc và đường xiên
Bài 9. Đường trung trực của một đoạn thẳng
Bài 11. Tính chất ba đường phân giác của tam giác