Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG. a) Chứng minh BG = GC = CE = BE
225
06/01/2024
Bài 77 trang 90 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.
a) Chứng minh BG = GC = CE = BE.
b) Chứng minh ∆ABE = ∆ACE.
c) Nếu CG = AE thì tam giác ABC là tam giác gì? Vì sao?
Trả lời
a) Xét tam giác ABC cân tại A nên AB = AC (hai cạnh bên).
Xét ABD và ACD có:
AB = AC (do ABC cân tại A),
DB = DC (do D là trung điểm của BC),
AD là cạnh chung
Do đó ABD = ACD (c.c.c)
Suy ra (hai góc tương ứng).
Mà (hai góc kề bù)
Nên
Suy ra AD vuông góc với BC.
Mặt khác D là trung điểm của BC
Do đó AD là đường trưng trực của đoạn thẳng BC.
Suy ra GB = GC (1)
Lại có điểm E nằm trên đường thẳng AD nên E cũng nằm trên đường trung trực của BC.
Do đó EB = EC (2)
Xét BGD và BED có:
,
BG là cạnh chung,
DG = DE (giả thiết)
Do đó ∆BGD = BED (hai cạnh góc vuông)
Suy ra BG = BE (3)
Từ (1), (2) và (3) suy ra BG = GC = CE = BE.
Vậy BG = GC = CE = BE.
b) Xét ABE và ACE có:
AB = AC (do ABC cân tại A),
BE = CE (chứng minh câu a),
AE là cạnh chung
Do đó ∆ABE = ∆ACE (c.c.c).
Vậy ∆ABE = ∆ACE.
c) Ta có GD = ED (giả thiết) nên GD = GE
Mà G là trọng tâm của tam giác ABC nên GD = AG.
Do đó AG = GE hay G là trung điểm của AE nên GE = AE.
Mặt khác CG = AE
Suy ra GE = GC.
Theo câu a ta lại có GC = EC.
Khi đó GC = GE = EC.
+) Tam giác CGE có GC = GE = EB nên tam giác CGE là tam giác đều
Do đó
Suy ra:
• (tổng hai góc nhọn trong tam giác vuông CGD bằng 90°)
Suy ra
• (hai góc kề bù)
Nên
Mà GA = GC nên tam giác AGC cân tại G, do đó
Lại có (tổng ba góc của tam giác AGC).
Do đó
+) Ta có (hai góc kề nhau)
Hay
Tam giác cân ABC có nên là tam giác đều.
Vậy tam giác ABC đều.
Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 8. Đường vuông góc và đường xiên
Bài 9. Đường trung trực của một đoạn thẳng
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 11. Tính chất ba đường phân giác của tam giác
Bài 12. Tính chất ba đường trung trực của tam giác
Bài 13. Tính chất ba đường cao của tam giác