Giải Sách bài tập Toán lớp 7 Bài 8: Đường vuông góc và đường xiên
Bài 52 trang 85 SBT Toán 7 Tập 2: Cho góc xOy và điểm B thuộc tia Ox, B ≠ O. Vẽ H là hình chiếu của điểm B trên đường thẳng Oy trong các trường hợp sau:
a) là góc nhọn;
b) là góc vuông;
c) là góc tù.
Lời giải
a) là góc nhọn
b) là góc vuông
c) là góc tù
Bài 53 trang 85 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC, lấy điểm M nằm giữa A và H. Chứng minh:
a) BH = CH;
b) MB = MC;
c) MA < AC.
Lời giải
a) Vì tam giác ABC cân tại A nên AB = AC.
Xét AHB và AHC có:
,
BA = AC (chứng minh trên),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra BH = CH (hai cạnh tương ứng).
Vậy BH = CH.
b) Vì ∆ABH = ∆ACH (chứng minh câu a)
Suy ra (hai góc tương ứng).
Xét AMB và AMC có:
BA = AC (chứng minh câu a),
(do ),
AM là cạnh chung
Do đó ∆ABM = ∆ACM (c.g.c).
Suy ra BM = CM (hai cạnh tương ứng).
Vậy BM = CM.
c) Vì là góc ngoài của tam giác CMH tại đỉnh M
Nên
Mà nên là góc tù
Xét tam giác AMC có là góc tù
Nên MC < AC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất).
Vậy MC < AC.
Bài 54 trang 85 SBT Toán 7 Tập 2: Từ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý (Hình 40).
a) So sánh độ dài AH và AB, AH và AC.
b) Chứng minh: Nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.
Lời giải
a) Ta có AH và AB lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.
Suy ra AH < AB.
Tương tự, AH và AC lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.
Suy ra AH < AC.
Vậy AH < AB và AH < AC.
b) • Nếu AB = AC.
Xét AHB và AHC có:
,
AB = AC (giả thiết),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra BH = CH (hai cạnh tương ứng).
• Nếu BH = CH
Xét AHB và AHC có:
,
BH = CH (giả thiết),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (hai cạnh góc vuông).
Suy ra AB = AC (hai cạnh tương ứng).
Vậy nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.
Bài 55 trang 85 SBT Toán 7 Tập 2: Cho tam giác ABC vuông tại A, M là trung điểm của AC.
a) Vẽ E là hình chiếu của A trên đường thẳng BM.
b) Vẽ F là hình chiếu của C trên đường thẳng BM.
c) Chứng minh BE + BF > 2AB.
Lời giải
a)
b)
c) Xét MAE và MCF có:
,
MA = MC (vì M là trung điểm của AC),
(hai góc đối đỉnh)
Do đó ∆MAE = ∆MCF (cạnh huyền – góc nhọn).
Suy ra ME = MF (hai cạnh tương ứng).
Ta có BA và BM lần lượt là đường vuông góc và đường xiên kẻ từ điểm B xuống đường thẳng AC
Suy ra AB < BM.
Hay AB < BE + EM (1) và AB < BF – MF (2)
Cộng vế theo vế của (1) và (2) ta có:
AB + AB < BE + EM + BF – MF
Mà ME = MF
Do đó 2AB < BE + BF.
Vậy BE + BF > 2AB.
a) ;
b) CN = MA;
c) Nếu a song song với BC thì MA = AN.
Lời giải
a) Xét MAB vuông tại M có: (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Ta có
Suy ra
Lại có
Suy ra .
Vậy .
b) Xét MAB và NCA có:
,
BA = AC (vì tam giác ABC vuông cân tại A),
(chứng minh câu a).
Do đó ∆MAB = ∆NCA (cạnh huyền – góc nhọn).
Suy ra MA = NC (hai cạnh tương ứng).
Vậy MA = NC.
c) Vì tam giác ABC cân tại A nên
Lại có (tổng ba góc của tam giác ABC)
Suy ra .
• Nếu a // BC thì (hai góc so le trong).
Do đó .
Xét ABM có (tổng ba góc của một tam giác)
Suy ra .
Do đó (cùng bằng 45°).
Xét ∆AMB có và nên DAMB vuông cân tại M.
Suy ra MA = MB (1)
• Nếu a // BC thì (hai góc so le trong)
Xét ABM có (tổng ba góc của một tam giác)
Suy ra .
Do đó (cùng bằng 45°).
Xét ∆ANC có và nên ∆ANC vuông cân tại N.
Suy ra CN = AN (2)
Từ (1) và (2) suy ra MA = AN.
Vậy MA = AN.
Lời giải
Kẻ DH ⊥ BC.
Vì BD là tia phân giác của góc ABC nên .
Xét DAB và DHB có:
,
BD là cạnh chung,
(chứng minh trên)
Do đó ∆DAB = ∆DHB (cạnh huyền – góc nhọn).
Suy ra AD = HD (hai cạnh tương ứng) (1)
Vì DDHC vuông tại H nên HD < DC (trong tam giác vuông, cạnh huyển là cạnh lớn nhất) (2)
Từ (1) và (2) suy ra AD < DC.
Vậy AD < DC.
Bài 58 trang 86 SBT Toán 7 Tập 2: Cho tam giác ABC vuông tại A (AB < AC), BD là tia phân giác của góc ABC (D ∈ AC). Qua C kẻ tia Cx vuông góc với AC cắt BD tại M.
a) Chứng minh tam giác CBM là tam giác cân.
b) So sánh độ dài CM và AC.
Lời giải
a) Vì ABD vuông tại A nên (trong tam giác vuông, tổng hai góc nhọn bằng 90o)
Mà (do BD là tia phân giác của góc ABC) và (hai góc đối đỉnh).
Nên
Vì CDM vuông tại C nên (trong tam giác vuông, tổng hai góc nhọn bằng 90o).
Suy ra
Do đó tam giác CBM cân tại C.
Vậy tam giác CBM cân tại C.
b) Vì tam giác CBM cân tại C (chứng minh câu a)
Nên CM = BC.
Vì ABC vuông tại A nên BC > AC (trong tam giác vuông, cạnh huyển là cạnh lớn nhất).
Suy ra CM > AC.
Vậy CM > AC.
Bài 59 trang 86 SBT Toán 7 Tập 2: Cho tam giác ABC có và nhọn. H và K lần lượt là hình chiếu của B và C trên Ax (Hình 41).
Chứng minh:
a) BH + CK ≤ BC.
b) Nếu tổng BH + CK lớn nhất thì tia Ax phải vuông góc với BC.
Lời giải
a) Vì BHE vuông tại H nên BH ≤ BE (trong tam giác vuông, cạnh huyển là cạnh lớn nhất).
Vì CKE vuông tại K nên CK ≤ CE (trong tam giác vuông, cạnh huyển là cạnh lớn nhất).
Suy ra BH + CK ≤ BE + CE = BC.
Vậy BH + CK ≤ BC.
b) Ta có BH + CK ≤ BC (theo câu a).
Do đó BH + CK lớn nhất khi BH + CK = BC
Điều này xảy ra khi và chỉ khi BH = BE, CK = CE.
Khi đó BH ≡ BE, CK ≡ CE
Do đó BE ⊥ Ax và CE ⊥ Ax
Hay BC ⊥ Ax.
Vậy nếu tổng BH + CK lớn nhất thì tia Ax phải vuông góc với BC.
Xem thêm lời giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 6. Trường hợp bằng nhau thứ ba của tam giác:
Bài 9. Đường trung trực của một đoạn thẳng