Giải Sách bài tập Toán 10 Bài ôn tập chương 4
Giải SBT Toán 10 trang 106 Tập 1
Bài 67 trang 106 SBT Toán 10 Tập 1: Cho góc nhọn α. Biểu thức (sinα . cotα)2 + (cosα . tanα)2 bằng:
A. 2.
B. tan2α + cot2α.
C. 1.
D. sinα + cosα.
Lời giải:
Đáp án đúng là C
Ta có: (sinα . cotα)2 + (cosα . tanα)2
= (sinα.)2 + (cosα.)2
= cos2α + sin2α
= 1.
Bài 68 trang 106 SBT Toán 10 Tập 1: Cho các vectơ . Phát biểu nào sau đây là đúng?
Lời giải:
Đáp án đúng là D
Với ta có: .
Bài 69 trang 106 SBT Toán 10 Tập 1: Cho tứ giác ABCD. Biểu thức bằng:
A. CD2.
B. 0.
C. .
D. 1.
Lời giải:
Đáp án đúng là B
Ta có:
Bài 70 trang 106 SBT Toán 10 Tập 1: Cho góc nhọn α. Biểu thức tanα . tan(90°– α) bằng:
A. tanα + cotα.
B. tan2α
C. 1.
D. tan2α + cot2α.
Lời giải:
Đáp án đúng là C
tanα . tan(90°– α)
= tanα . cotα
= 1.
Lời giải:
Ta có:
a) Vì 0° < α < 90° nên
⇒
⇒
Áp dụng công thức lượng giác của hai góc bù nhau, ta được:
b) Vì 90° < α < 180° nên
⇒
⇒
Áp dụng công thức lượng giác của hai góc bù nhau, ta được:
Giải SBT Toán 10 trang 107 Tập 1
a) Độ dài cạnh BC và độ lớn góc B;
b) Bán kính đường tròn ngoại tiếp R;
c) Diện tích của tam giác ABC;
d) Độ dài đường cao xuất phát từ A;
e) với M là trung điểm của BC.
Lời giải:
a) Độ dài cạnh BC và độ lớn góc B;
Xét tam giác ABC, có:
BC2 = AB2 + AC2 – 2AB.AC.cos
= 42 + 62 – 2.4.6.cos60°
= 42 + 62 – 24
= 28
⇔ BC = .
Áp dụng định lí sin trong tam giác ABC ta được:
⇔
⇔ .
Vậy BC = và .
b) Áp dụng định lí sin trong tam giác, ta có:
⇔ .
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 3.
c) Áp dụng công thức tính diện tích tam giác, ta được:
Vậy diện tích của tam giác ABC là (đvdt).
d) Gọi AH là đường cao của tam giác kẻ từ đỉnh A
Ngoài ra diện tích tam giác ABC là:
Theo ý c) ta tính được diện tích tam giác là
Do đó ta có:
⇔
Vậy độ dài đường cao xuất phát từ A là 4.
e) Ta có:
Vì M là trung điểm của BC nên
Khi đó:
Vậy và .
Bài 73 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC. Chứng minh rằng .
Lời giải:
Ta có:
Bài 74 trang 107 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Tính:
c) Độ dài đường trung tuyến AM.
Lời giải:
a) Xét tam giác ABC, có:
Áp dụng hệ quả của định lí cosin, ta được:
Ta có:
⇔
Vì là góc trong tam giác nên
⇒ .
Vậy .
b) Diện tích tam giác ABC là:
Vậy diện tích tam giác ABC là
c) Vì M là trung điểm của BC nên BM = MC = BC = .6 = 3.
Xét tam giác ABM:
Áp dụng định lí cos, ta có:
AM2 = AB2 + BM2 – 2.AM.BM.cosB
⇔ AM2 = 52 + 32 – 2.5.3.
⇔ AM2 = 28
⇔ AM =
Vậy độ dài đường trung tuyến AM là .
Lời giải:
Ta có:
Xét vế phải của đẳng thức ta có:
Lời giải:
Ta có:
Ta lại có:
Và
⇒
⇔
⇔
Suy ra AM vuông góc BD.
Vậy và AM vuông góc BD.
Lời giải:
Kẻ CH vuông góc với bờ AB.
Xét tam giác ABC, có:
⇒
Áp dụng định lí sin trong tam giác, ta được:
⇔
⇔
Xét tam giác CHB vuông tại B, có:
.
Vậy độ rộng của con sông chỗ chảy qua vị trí người quan sát khoảng 51,98 mét.
Bài 78 trang 107 SBT Toán 10 Tập 1: Cho hai vectơ và . Tính .
Lời giải:
Giải SBT Toán 10 trang 108 Tập 1
Bài 79 trang 108 SBT Toán 10 Tập 1: a) Chứng minh đẳng thức với và là hai vectơ bất kì.
Lời giải:
a)
b) Áp dụng công thức trên ta được:
Mặt khác ta lại có:
Vậy và .
Lời giải:
Ta có:
=
=
=
= 0
Lời giải:
Gọi I và J lần lượt là trung điểm của AB và CD.
Khi đó ta có: và
⇒
⇔
⇔
⇔
⇔
Vậy M là điểm thuộc đường tròn đường kính IJ.
Lời giải:
Xét biểu thức
⇒
Do đó để biểu thức đạt giá trị nhỏ nhất thì đạt giá trị nhỏ nhất khi MG nhỏ nhất và MG nhỏ nhất khi M là hình chiếu vuông góc của G lên đường thẳng d.
Vậy để đạt giá trị nhỏ nhất thì điểm M là hình chiếu vuông góc của G trên đường thẳng d.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 5: Tích của một số với một vectơ
Bài 6: Tích vô hướng của hai vectơ