a) Chứng minh đẳng thức |a + b|^2 = |a|^2 + |b|^2 + 2.a.b với a và b là hai vectơ bất kì

Bài 79 trang 108 SBT Toán 10 Tập 1: a) Chứng minh đẳng thức a+b2=a2+b2+2.a.b với a và b là hai vectơ bất kì.

b) Cho a=2,b=3,a+b=7. Tính a.b và a,b.

Trả lời

a) 

a+b2=a+b2=a2+b2+2.a.b=a2+b2+2.a.b

b) Áp dụng công thức trên ta được:

Sách bài tập Toán 10 Bài ôn tập chương 4 - Cánh diều (ảnh 1)

Mặt khác ta lại có: 

Sách bài tập Toán 10 Bài ôn tập chương 4 - Cánh diều (ảnh 1)

Vậy a.b=3 và a.b=120°.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

Bài ôn tập chương 4

Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Bài 2: Hoán vị. Chỉnh hợp

Bài 3: Tổ hợp

Câu hỏi cùng chủ đề

Xem tất cả