Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1) và B(7; 5). a) Tìm toạ độ của điểm C
311
11/01/2024
Bài 4.36 trang 66 SBT Toán 10 Tập 1:
Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1) và B(7; 5).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho C cách đều A và B.
b) Tìm toạ độ của điểm D thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
Trả lời
a) Vì C cách đều A và B nên CA = CB
AC2 = BC2
Giả sử C(x; 0) là điểm thuộc trục hoành
Với A(1; 1); B(7; 5) và C(x; 0) ta có:
• AC2 = (x – 1)2 + (–1)2
AC2 = x2 – 2x + 2
• BC2 = (x – 7)2 + (–5)2
BC2 = x2 – 14x + 74
Do đó AC2 = BC2
x2 – 2x + 2 = x2 – 14x + 74
12x = 72
x = 6
Vậy C(6; 0).
b) Gọi M là trung điểm của AB.
Khi đó
Do đó để vectơ có độ dài ngắn nhất thì vectơ có độ dài ngắn nhất
DM có độ dài ngắn nhất
Hay DM2 nhỏ nhất.
Giả sử D(0; y) là điểm thuộc trục tung
Với A(1; 1); B(7; 5) và D(0; y) ta có:
• M là trung điểm của AB nên
M(4; 3)
DM2 = 42 + (3 – y)2
Hay DM2 = (y – 3)2 + 16
Vì (y – 3)2 ≥ 0 với mọi y
Nên (y – 3)2 + 16 ≥ 16 với mọi y
Hay DM2 ≥ 16 với mọi y
Dấu “=” xảy ra khi và chỉ khi y – 3 = 0 y = 3.
Do đó DM đạt giá trị nhỏ nhất khi D(0; 3)
Vậy D(0; 3) thì vectơ có độ dài ngắn nhất.
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 9: Tích của một vectơ với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4
Bài 12: Số gần đúng và sai số
Bài 13: Các số đặc trưng đo xu thế trung tâm