Cho tam giác ABC không cân. Gọi D, E, F theo thứ tự là chân các đường cao kẻ từ A, B, C; gọi M, N, P

Bài 4.33 trang 65 SBT Toán 10 Tập 1:

Cho tam giác ABC không cân. Gọi D, E, F theo thứ tự là chân các đường cao kẻ từ A, B, C; gọi M, N, P tương ứng là trung điềm các cạnh BC, CA, AB. Chứng minh rằng:

MD.BC+NE.CA+PF.AB=0

Trả lời

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

Gọi H và O là tâm đường tròn ngoại tiếp tam giác ABC.

• Vì D, M lần lượt là hình chiếu của H và O lên BC, nên MD là hình chiếu của OH trên giá của BC

Theo định lí hình chiếu (được giới thiệu ở phần Nhận xét của Ví dụ 2, trang 62, Sách Bài tập Toán 10, tập một) ta có:

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

Chứng minh tương tự ta cũng có:

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

Từ (1), (2) và (3) ta có:

MD.BC+NE.CA+PF.AB

=OH.OCOH.OB+OH.OAOH.OC+OH.OBOH.OA

= 0

Vậy MD.BC+NE.CA+PF.AB=0.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Câu hỏi cùng chủ đề

Xem tất cả