Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). a) Chứng minh rằng A, B, C

Bài 4.37 trang 66 SBT Toán 10 Tập 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.

b) Tìm toạ độ trực tâm H của tam giác ABC.

c) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I.

Trả lời

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

a) Với A(–3; 2), B(1; 5) và C(3; −1) ta có:

AB=4;3 và AC=6;3

Vì 46=2333=1 nên hai vectơ AB và AC không cùng phương

Do đó ba điểm A, B, C không thẳng hàng

Vậy A, B, C là ba đỉnh của một tam giác.

Vì G là trọng tâm của tam giác ABC nên ta có:

xG=3+1+33=13yG=2+5+13=2 G13;2

Vậy tọa độ trọng tâm của tam giác ABC là: G13;2.

b) Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC

Hay AH.BC=0 và BH.AC=0 

Giả sử H(x; y) là tọa độ trực tâm tam giác ABC

Với A(–3; 2), B(1; 5), C(3; −1) và H(x; y) ta có:

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

 6x – 3y = –9     (2)

Trừ vế theo vế (2) cho (1) ta có:

5x = 0  x = 0

 y = 3

 H(0; 3)

Vậy tọa độ trực tâm của tam giác ABC là H(0; 3)

c) Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:

AH=2IM với M là trung điểm của BC.

Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Với A(–3; 2), B(1; 5), C(3; −1), H(0; 3) và I(a; b) ta có:

• AH=3;1

• M là trung điểm của BC nên xM=1+32=2yM=5+12=2

Sách bài tập Toán 10 Bài 11: Tích vô hướng của hai vectơ - Kết nối tri thức (ảnh 1)

Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là I12;32.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Câu hỏi cùng chủ đề

Xem tất cả