Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). a) Chứng minh rằng A, B, C
348
11/01/2024
Bài 4.37 trang 66 SBT Toán 10 Tập 1:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.
b) Tìm toạ độ trực tâm H của tam giác ABC.
c) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I.
Trả lời
a) Với A(–3; 2), B(1; 5) và C(3; −1) ta có:
và
Vì nên hai vectơ và không cùng phương
Do đó ba điểm A, B, C không thẳng hàng
Vậy A, B, C là ba đỉnh của một tam giác.
Vì G là trọng tâm của tam giác ABC nên ta có:
Vậy tọa độ trọng tâm của tam giác ABC là: .
b) Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC
Hay và
Giả sử H(x; y) là tọa độ trực tâm tam giác ABC
Với A(–3; 2), B(1; 5), C(3; −1) và H(x; y) ta có:
6x – 3y = –9 (2)
Trừ vế theo vế (2) cho (1) ta có:
5x = 0 x = 0
y = 3
H(0; 3)
Vậy tọa độ trực tâm của tam giác ABC là H(0; 3)
c) Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:
với M là trung điểm của BC.
Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC
Với A(–3; 2), B(1; 5), C(3; −1), H(0; 3) và I(a; b) ta có:
•
• M là trung điểm của BC nên
Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 9: Tích của một vectơ với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4
Bài 12: Số gần đúng và sai số
Bài 13: Các số đặc trưng đo xu thế trung tâm