Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng (P): x – y + z + 3 = 0, (Q): x + 2y – 2z – 5 = 0 và mặt cầu
17
30/11/2024
Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng (P): x – y + z + 3 = 0, (Q): x + 2y – 2z – 5 = 0 và mặt cầu . Gọi M là điểm di động trên (S) và N là điểm di động trên (P) sao cho MN luôn vuông góc với (Q). Giá trị lớn nhất của độ dài đoạn thẳng MN bằng
A.
B. 14
C. 28
D.
Trả lời
Đáp án đúng là: A
Mặt cầu (S) có tâm I (1;-2;3) và bán kính R = 5.
Mặt phẳng (P) có VTPT , mặt phẳng (Q) có VTPT .
Đường thẳng đi qua hai điểm M,N nhận làm VTCP, luôn cắt (P), gọi là góc giữa và(P), H là hình chiếu vuông góc của M lên (P).
Ta có
vuông tại H
.
.
Vậy giá trị lớn nhất của MN bằng