Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới. Gọi x1,x2 lần lượt là hai điểm cực trị thỏa mãn x2 = x1 +2

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới.

Cho hàm số bậc ba y = f(x) có đồ thị là đường cong ở hình bên dưới.   Gọi x1,x2 lần lượt là hai điểm cực trị thỏa mãn x2 = x1 +2 (ảnh 1)

Gọi x1,x2  lần lượt là hai điểm cực trị thỏa mãn x2=x1+2  fx13fx2=0.  và đồ thị luôn đi qua Mx0;fx0, trong đó x0=x11; gx  là hàm số bậc hai có đồ thị qua 2 điểm cực trị của đồ thị hàm số y = f(x) và điểm M. Tính tỉ số S1S2(S1 S2  lần lượt là diện tích hai hình phẳng được tạo bởi đồ thị hai hàm fx,gx  như hình vẽ).

A. 429

B. 532

C. 733

D. 635

Trả lời

Đáp án đúng là: B

Khi ta tịnh tiến đồ thị sao cho x0=0  khi đó diện tích hình phẳng không thay đổi.

x1=1;x2=3 đặt fx=ax3+bx2+cx+d;   gx=mx2+nx+q

f'x=3ax2+2bx+c

.

Vì hàm số y = f(x) đạt cực trị tại x1=1;x2=3f13f3=0  nên ta có hệ phương trình:

3a+2b+c=027a+6b+c=080a+26b+8c+2d=0b=6ac=9ad=2a

fx=ax36x2+9x+2

Mà hai đồ thị giao nhau tại 3 điểm nên ta có hệ phương trình:

g0=f0g1=f1g2=f2q=d=2am=2an=6agx=a2x2+6x+2

 


Khi đó S1=a.01x34x2+3x dx=5a12;

S2=a.13x34x2+3x dx=8a3

.

Do đó S1S2=532 .

Câu hỏi cùng chủ đề

Xem tất cả