Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính AB có B là tâm đường tròn

Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính ABB là tâm đường tròn đáy khối nón. Gọi S là đỉnh của khối nón (N). Khi thể tích khối nón (N) nhỏ nhất thì mặt phẳng qua đỉnh S và song song với mặt phẳng chứa đường tròn đáy của (N) có phương trình 2x + by + cz + d = 0. Tính T = b + c + d.

A. T = 12

B. T = 18

C. T = 24

D. T = 36

Trả lời

Đáp án đúng là: A

Mặt cầu (S) đường kính AB có tâm I (4;3;4), bán kính R=AB2=3 .

Giả sử thiết diện qua trục hình nón là tam giác SMN.

Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính AB có B là tâm đường tròn  (ảnh 1)

Gọi r, h  lần lượt là bán kính đáy và chiều cao của hình nón (h > 6).

là tâm đường tròn nội tiếp của tam giác SMN ta có: R=SSMNPSMN

3=12MN.SB12SM+SN+MN 3=r.hr+r2+h2 3r+r2+h2=rh r2=9hh6.

Thể tích khối nón là V=13πr2h=π3.9h2h6=fh .

f'h=3π.h212hh62

.

f'h=0h=0h=12.

Bảng biến thiên

Trong không gian Oxyz, cho hai điểm A (2;1;3), B (6;5;5). Xét khối nón (N) ngoại tiếp mặt cầu đường kính AB có B là tâm đường tròn  (ảnh 2)

đạt giá trị nhỏ nhất h=12 .

Ta có IS=3BIS2;3;1 .

Phương trình mặt phẳng (P) qua S (-2;-3;1), có vectơ pháp tuyến AB=22;2;1  2x+2y+z+9=0 .

Suy ra b = 2; c = 1; d = 9.

Vậy T = b + c + d = 12.

Câu hỏi cùng chủ đề

Xem tất cả