Tìm số giá trị nguyên của tham số thực m để tồn tại các số thực x;y thỏa mãn e^(x^2 + y^2 - m) e^(x + y +xy - m) = x^2 + y^2 + x + y + xy - 2m + 2

Tìm số giá trị nguyên của tham số thực m để tồn tại các số thực x;y thỏa mãn ex2+y2m+ex+y+xym=x2+y2+x+y+xy2m+2 .

A. 7

B. 9

C. 8

D. 6

Trả lời

Đáp án đúng là: B

Xét hàm số ft=ett1;t .

f't=et1f't=0t=0.

Ta thấy f'(t)  đổi dấu từ "-" sang "+" khi qua t = 0 nên ftf0=0;t .

Do đó ex2+y2mx2+y2m10,x,yex+y+xymx+y+xym10,x,y .

Dấu "=" xảy ra khi và chỉ khi x2+y2=mx+y+xy=m .

Hay ex2+y2m+ex+y+xym=x2+y2+x+y+xy2m+2x2+y2=m        1x+y+xy=m   2

Đặt S=x+y;P=x.y .

Ta có: S22P=mS+P=m  S2S3P=0 .

S24PS0;4 .

Lấy 1+2.2  vế theo vế ta được: S2+2S=3m  3

Xét hàm số fS=S2+2S;  S0;4 , có f'S=2S+2>0;  S0;4 .

Yêu cầu bài toán 3  có nghiệm f0mf40m8

Vậy có 9 giá trị nguyên của tham số m  thỏa mãn.

Câu hỏi cùng chủ đề

Xem tất cả