Trong Hình 12, cho tứ giác ABCD là hình thang. Biết DB là tia phân giác của góc ADC và góc DAB = góc DBC 

Bài 12 trang 64 SBT Toán 8 Tập 2: Trong Hình 12, cho tứ giác ABCD là hình thang. Biết DB là tia phân giác của ADC^ và DAB^=DBC^. Chứng minh rằng:

a) ∆ABD ᔕ ∆BDC.

b) BD2 = AB . DC.

Trong Hình 12, cho tứ giác ABCD là hình thang. Biết DB là tia phân giác của

Trả lời

a) Xét ∆ABD và ∆BDC có

DAB^=DBC^ và ADB^=BDC^ (DB là tia phân giác của ADC^).

Do đó ∆ABD ᔕ ∆BDC (g.g).

b) Ta có ∆ABD ᔕ ∆BDC, suy ra ABBD=BDDC.

Do đó BD2 = AB . DC (đpcm).

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 7

Bài 1: Hai tam giác đồng dạng

Bài 2: Các trường hợp đồng dạng của hai tam giác

Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 4: Hai hình đồng dạng

Bài tập cuối chương 8

Câu hỏi cùng chủ đề

Xem tất cả