Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC và AB, hai đường này cắt nhau tại M

Bài 8 trang 64 SBT Toán 8 Tập 2: Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC và AB, hai đường này cắt nhau tại M. Qua M kẻ đường thẳng cắt AB tại E và cắt AC tại F. Chứng minh rằng:

a) CACF=MEMF và BEBA=MEMF.

b) ∆BCE ᔕ ∆CFB.

Trả lời

Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC và AB

a) Xét ∆MCF có AE // CM (vì AB // CM), theo định lí Thalès ta có:

CACF=MEMF (1)

Xét ∆BEM có AF // BM (vì AC // BM), theo hệ quả của định lí Thalès ta có:

AEBE=EFME.

Ta có AEBE+1=EFME+1 hay AEBE+BEBE=EFME+MEME.

Suy ra BABE=MFME hay BEBA=MEMF (2)

b) Từ (1) và (2), suy ra CACF=BEBA, mà AB = BC = AC. Suy ra BCCF=BEBC.

Xét ∆BCE và ∆CFB có BCCF=BEBC và EBC^=BCF^ (∆ABC đều).

Do đó ∆BCE ᔕ ∆CFB (c.g.c).

Trường hợp đồng dạng thứ ba (g.g)

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 7

Bài 1: Hai tam giác đồng dạng

Bài 2: Các trường hợp đồng dạng của hai tam giác

Bài 3: Các trường hợp đồng dạng của hai tam giác vuông

Bài 4: Hai hình đồng dạng

Bài tập cuối chương 8

Câu hỏi cùng chủ đề

Xem tất cả