Tính giá trị của mỗi biểu thức sau: a) 3(2x – 1) + 5(3 – x) tại x=-3/2

Bài 35 trang 50 SBT Toán 7 Tập 1: 

Tính giá trị của mỗi biểu thức sau:

a) 3(2x – 1) + 5(3 – x) tại x=32;

b) 2x(6x – 1) – 3x(4x – 1) tại x = – 2 022;

c) (x – 2)(x2 + x + 1) – x(x2 – 1) tại x = 0,25;

d) 2x2 + 3(x – 1)(x + 1) tại x=13.

Trả lời

a) Ta có:

3(2x – 1) + 5(3 – x)

= 3 . 2x – 3 . 1 + 5 . 3 – 5 . x

= 6x – 3 + 15 – 5x

= x + 12

Thay x = 32 vào biểu thức x + 12 ta được:

32 + 12 = 3+242=212.

Vậy với x = 32 thì giá trị của biểu thức đã cho là 212.

b) Ta có:

2x(6x – 1) – 3x(4x – 1)

= 2x . 6x – 2x . 1 – 3x . 4x – 3x . (–1)

= 12x2 – 2x – 12x2 + 3x

= (12x2 – 12x2) + (– 2x + 3x)

= x.

Thay x = – 2 022 vào biểu thức vừa thu gọn ta được – 2 022.

Vậy với x = – 2 022 thì giá trị biểu thức đã cho là – 2 022.

c) Ta có:

(x – 2)(x2 + x + 1) – x(x2 – 1)

= x . (x2 + x + 1) – 2 . (x2 + x + 1) – x . x2 – x . (–1)

= x . x2 + x . x + x . 1 – 2 . x2 – 2 . x – 2 . 1 – x3 + x

= x3 + x2 + x – 2x2 – 2x – 2 – x3 + x

= (x3 – x3) + (x2 – 2x2) + (x – 2x + x) – 2

= – x2 – 2.

Thay x = 0,25 vào biểu thức vừa thu gọn ta được:

– 0,252 – 2 = –0,0625 – 2 = –2,0625.

Vậy với x = 0,25 thì giá trị biểu thức đã cho là –2,0625.

d) Ta có:

2x2 + 3(x – 1)(x + 1)

= 2x2 + (3 . x – 3 . 1)(x + 1)

= 2x2 + (3x – 3)(x + 1)

= 2x2 + 3x . (x + 1) – 3 . (x + 1)

= 2x2 + 3x . x + 3x . 1 – 3 . x – 3 . 1

= 2x2 + 3x2 + 3x – 3x – 3

= (2x2 + 3x2) + (3x – 3x) – 3

= 5x2 – 3.

Thay x = 13 vào biểu thức vừa thu gọn ta được:

5.1323=5.193=59279=229

Vậy với x = 13 thì giá trị biểu thức đã cho là 229.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 2. Đa thức một biến. Nghiệm của đa thức một biến

Bài 3. Phép cộng, phép trừ đa thức một biến

Bài 4. Phép nhân đa thức một biến

Bài 5. Phép chia đa thức một biến

Bài tập cuối chương 6

Bài 1. Tổng các góc của một tam giác

Câu hỏi cùng chủ đề

Xem tất cả