Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong
69
18/03/2024
Bài 17 trang 42 Chuyên đề Toán 11: Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong Hình 3 và Hình 4.
Trả lời
⦁ Ta xét Hình 4a:
Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.
Ta có AA’ cắt BB’ tại O.
Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.
Suy ra , với k > 0.
Do đó V(O, k)(A) = A’ và OA’ = k.OA.
Vì vậy .
Xét ∆OA’B’ và ∆OAB, có:
chung;
.
Do đó (g.g).
Suy ra .
Vì vậy OB’ = k.OB.
Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm cùng phía đối với O.
Suy ra .
Do đó V(O, k)(B) = B’.
Vậy phép vị tự tâm O, tỉ số biến vật AB thành ảnh A’B’.
⦁ Ta xét Hình 4b:
Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.
Ta có AA’ cắt BB’ tại O.
Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm khác phía đối với O.
Suy ra , với k < 0.
Do đó V(O, k)(A) = A’ và OA’ = |k|.OA.
Vì vậy .
Xét ∆OA’B’ và ∆OAB, có:
(đối đỉnh);
.
Do đó (g.g).
Suy ra .
Vì vậy OB’ = |k|.OB.
Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm khác phía đối với O.
Suy ra
Do đó V(O, k)(B) = B’.
Vậy phép vị tự tâm O, tỉ số biến vật AB thành ảnh A’B’.
Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 6: Phép vị tự
Bài 7: Phép đồng dạng
Bài tập cuối chuyên đề 1
Bài 1: Đồ thị
Bài 2: Đường đi Euler và đường đi Hamilton
Bài 3: Bài toán tìm đường đi ngắn nhất