Giải mỗi bất phương trình sau: log1/2 của (2x - 6) < -3; log3 của (x^2 – 2x + 2) > 0; log4 của (2x^2 + 3x) >= 1/2; log0,5 của (x – 1) ≥ log0,5 của (5 – 2x)
643
07/12/2023
Bài 64 trang 51 SBT Toán 11 Tập 2: Giải mỗi bất phương trình sau:
a)
b) log3 (x2 – 2x + 2) > 0;
c)
d) log0,5 (x – 1) ≥ log0,5 (5 – 2x);
e) log(x2 + 1) ≤ log(x + 3);
g)
Trả lời
a) (do
⇔ 2x – 6 > 8 ⇔ x > 7.
Vậy tập nghiệm của bất phương trình là (7; +∞).
b) log3 (x2 – 2x + 2) > 0
⇔ x2 – 2x + 2 > 30 ⇔ x2 – 2x + 2 > 1
⇔ x2 – 2x + 1 > 0 ⇔ (x – 1)2 > 0 ⇔ x ≠ 1.
Vậy tập nghiệm của bất phương trình là ℝ \ {1}.
c)
Vậy tập nghiệm của bất phương trình là
d) log0,5 (x – 1) ≥ log0,5 (5 – 2x)
⇔ 0 < x – 1 ≤ 5 – 2x (Vì 0 < 0,5 < 1)
Vậy tập nghiệm của bất phương trình là (1 ; 2].
e) log(x2 + 1) ≤ log(x + 3)
⇔ 0 < x2 + 1 ≤ x + 3
⇔ x2 – x – 2 ≤ 0 (do x2 + 1 > 0 với mọi x)
⇔ –1 ≤ x ≤ 2.
Vậy tập nghiệm của bất phương trình là [–1; 2].
g)
⇔ – log5 (x2 – 6x + 8) + log5 (x – 4) > 0
⇔ log5 (x2 – 6x + 8) < log5 (x – 4)
⇔ 0 < x2 – 6x + 8 < x – 4
Vậy bất phương trình vô nghiệm.
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: